光纤陀螺在现代航空,航海,航天和 工业中广泛使用的惯性导航仪器。它的发展对一个的工业, 和一些需求-仪器发展具有十分重要的作用。通过使用光纤陀螺仪准确的测量设备的角速度值。
1.光纤陀螺仪的发展现状
光纤陀螺仪是以光导纤维线圈为基础的敏感元件, 由激光二极管发射出的光线朝两个方向沿光导纤维传播。光传播路径的不同,决定了敏感元件的角位移。
光纤陀螺仪与传统的机械陀螺仪相比,优点是全固态,没有旋转部件和摩擦部件,-,动态范围大,瞬时启动,结构简单,光纤陀螺仪生产厂家,尺寸小,重量轻。与激光陀螺仪相比,新型光纤陀螺,光纤陀螺仪没有闭锁问题,也不用在石英块精密加工出光路,成本相对较低。
2.光纤陀螺仪的工作原理
光纤陀螺仪的实现主要基于塞格尼克理论:当光束在一个环形的通道中行进时,若环形通道本身具有一个转动速度,那么光线沿着通道转动方向行进所需要的时间要比沿着这个通道转动相反的方向行进所需要的时间要多。也就是说当光学环路转动时,在不同的行进方向上,光学环路的光程相对于环路在静止时的光程都会产生变化。利用光程的这种变化,检测出两条光路的相位差或干涉条纹的变化,就可以测出光路旋转角速度,这便是光纤陀螺仪的工作原理。
3.光纤陀螺仪的应用
光纤陀螺仪价格较为昂贵。在民用领域主要使用中低精度光纤陀螺,因为价格比较低廉,能够满足目前精度的使用。主要应用在地面车辆的自动导航、定位定向、车辆控制;对民用飞机姿态控制;在地下工程维护中,寻找损坏的电力线、管道和通信光缆位置的定位工具和抢救工具等。通过科技实力不断的发展光纤陀螺仪再进一度发展,有望可以在更多的领域当中见到它的身影。
光纤陀螺的实现主要基于塞格尼克理论:当光束在一个环形的通道中行进时,若环形通道本身具有一个转动速度,那么光线沿着通道转动方向行进所需要的时间要比沿着这个通道转动相反的方向行进所需要的时间要多。也就是说当光学环路转动时,在不同的行进方向上,光学环路的光程相对于环路在静止时的光程都会产生变化。利用光程的这种变化,光纤陀螺,检测出两条光路的相位差或干涉条纹的变化,就可以测出光路旋转角速度,这便是光纤陀螺仪的工作原理。光纤陀螺原理是一束光从光电管发出,经过耦合器1端进入到3端。通过光环,两束不同方向进入光环,绕一圈回来进行相干叠加。返回的光回到发光二极管,通过发光二极管探测强度。光纤陀螺原理看起来比较简单,但重要的是如何把影响两束光光程因素排除掉。这是做光纤陀螺面临的重要的问题。
当前光纤陀螺主要采用干涉式光纤陀螺(ifog)、谐振式光纤陀螺(rfog)两种方案。干涉式光纤陀螺相对比较成熟,为了提高系统探测精度降低噪声,采用了超辐射发光光源(sld)及长达数百米的保偏光纤线圈,三轴光纤陀螺,同时也带来了系统体积重量较大,系统稳定性降低、成本较高的缺点。谐振式光纤陀螺采用循环光束之间的多波干涉的原理,可以在较短的光纤中获得较高的探测精度,使需要高相干光源δυ<100 khz、低损耗的保偏耦合器,而且高相干光源也引入了较强的后向反射散射噪声。在此之后又提出了一种再入式光纤陀螺(refog),该种陀螺采用低相干光源(sld),利用光在谐振腔中相向传输的光传输相同圈数后出涉的原理,获得较高的输出曲线精细度,通过光放大器有源放大可获得较高的探测灵敏度,缺点是输出中包含了大量无转动信息(直接通过耦合器未进入谐振腔)的光,使其在无源情况下探测灵敏度较低,即使是在有源情况下,由于增益饱和也给光放大器带来了负担。而且采用sld始终是陀螺方案中的一种折中,但该器件存在工艺技术较复杂、输出功率较低(一般<150 μw)、价格昂贵、光源稳定性差等缺点,-是-了多轴系统中光源复用方案系统精度的提高。
|