该项目通过采用冷却真空泵水温的方式、有效改进真空罐与膨化罐的比例关系体积比为15~18:1,应用jzj2s-2a型的双极组合真空泵,提高真空度,使胡萝卜、茶叶等高纤维含量的果蔬原料实现膨化成为可能。采用自然降温与压力脉冲相结合的方式,改进膨化工艺,达到了设备改造的目标,使果蔬膨化设备的单罐生产周期由4个小时缩短到2.5小时,从而使原年产100吨膨化设备产能达130吨。在膨化设备安装了和温度传感器,对膨化干燥过程物料的水分含量和产品温度进行在线控制,完善了变温压差膨化干燥技术,填补-的空白,为变温压差膨化干燥技术传质传热技术理论提供了技术支撑。
(7)统计分析发现,经变温压差膨化的柑橘皮脆片,火龙果脆膨化设备厂家,其吸附等温线形状与苹果脆片、冬枣脆片大致相似,呈反“s”形态。3种果蔬脆片的平衡含水率均随相对湿度的增大而增大,随温度的升高而减小。mhe、gab模型对3种果蔬脆片等温吸附曲线的预测性较好,gab模型适用性广,mbet模型与其基本无相关性。在贮藏过程中,柑橘皮脆片需在13%~30%的相对湿度下密封贮藏,贮藏温度宜控制在10℃以下,或30℃以上。
通过以上研究,获得了柑橘皮变温压差膨化干燥的较优生产工艺,揭示了变温压差膨化过程中柑橘皮的品质及抗yang化成分的变化规律;通过对柑橘皮变温压差膨化干燥特性的研究,建立了干燥模型,并获得了柑橘皮脆片贮藏过程的适条件参数,为柑橘皮膨化脆片的产业化生产提供了理论依据,为柑橘皮的精深加工开拓了一条全新的途径。
食品脱水是一个复杂的过程,火龙果脆膨化设备,在进行脱水的时候,食品的理化性质可能会发牛不同程度的改变,如发生颜色的改变,芳香气味的损失和再水合能力的下降等[5]。多数的干燥丰要经过3个阶段:即物料预热阶段、恒速干燥阶段和降速下燥阶段,在干燥的第3个阶段,干燥速度明显下降,并且耗费了更多能量[22-25]。果蔬变温压差膨化干燥是在热风干燥的基础上进行的,当果蔬原料进行一定时间的热风干燥后,在进入降速干燥期前,进行膨化干燥的处理从而减少能耗。a.i.vamalis等(2001)研究表明,经过热风丁燥后马铃薯表面形成的部分干燥层(pdl,panially drier layer)对膨化足否能成功和产品膨化后形状的保持是一个十分重要的条件[19]。原料经切分后在一定的十燥温度f进行预干燥,会在物料表面形成部分干燥层,这是由丁物料表面和内部失水速度不同造成的。干燥时间过长,物料内部水份散火过多,在变温压差膨化发生的时候,没有足够的水汽化并带动预干燥后的物料膨化;反之,如果预干燥时间不够,没有形成一定厚度的部分干燥层,不利于膨化产品外形的固定和保持,并且预十燥不足还会导致在后期膨化t.燥阶段耗费更多的能。变温压羞膨化干燥也可以产生类似与冷冻十燥品质的产品,在颜色和风味改变上与冷冻干燥都比较接近。研究表明,经过变温压差膨化干燥的产品由于原料内部产牛了多孔、海绵状的结构,这种结构提高了产品的复水能力[26-28],大部分产品可以在5min内完全复水,有三种需要注意的果蔬原料,山药和胡椒的的复水时间分别为10min和2min,火龙果脆膨化设备,菠萝的复水时间仅为1min[12]。t.karamanou,n.k.kannellopoulos和v.g.lbelessiotis(1996)比较了经过部分热风干燥的蔬菜原料,研究表明在整个干燥过程中热风干燥的时间越长,商品的复水能力越弱[29,30]。此外,与燥相比,变温压差膨化丁燥过程中形成的多孔结构加速了干燥的过程,这样可以节约大概40%的干燥时间,节约了加工的成本[31-35]。
|