此外,有一定数量的微裂缝和提高热冲击破坏的性能有很大的帮助,例如:孔隙度是10%到20%之间的密度陶瓷,热膨胀裂纹的形成通常遭受气孔阻力,钝化裂纹和孔隙的存在可以帮助减少应力集中。 作为氧化锆陶瓷材料,花都精密陶瓷零件,具有高温力学性能、高熔点、化学稳定性和热稳定性等特点。因此,它的使用往往在高温条件下,因此其热冲击性能也是其性能的一个关键指标。许多氧化锆非常-的属性,如:氧化锆在单一材料和广场和立方三晶体形式存在在一起,精密陶瓷零件加工厂,它有其特殊的相变特性,可以使用如此多的功能
精密陶瓷零部件的加工方法:
对于精密陶瓷零部件材料,由于其特殊的物理机械性能,初只能采用磨削方法进行加工,随着机械加工技术的发展,目前已可采用类似金属加工的多种工艺来加工精密陶瓷零件材料。
1、磨料加工:研磨加工、抛光加工、砂带加工、滚筒加工、超声加工、喷丸加工、粘弹性流动加工;
2、塑性加工:金刚石塑性加工、金刚石塑性磨削;
3、化学加工:蚀刻、化学研磨、化学抛光;
4、电加工:电火花加工、电子束加工、离子束加工、等离子体加工;
5、复合加工:光刻加工、elid磨削、超声波磨削、超声波研磨、超声波电火花加工;
6、光学加工:激光加工。
氧化锆陶瓷加工工艺:
1、磨削加工---
这是一种新型的氧化锆陶瓷加工方法。它的原理是在电解的作用下,先修正金属基砂轮,在磨削过程中,精密陶瓷零件定做,在电极和砂轮之间加电解磨削液,并再加上脉冲电流,在整个的氧化锆陶瓷加工过程中,砂轮的锋锐性是一直保持的。此种加工方法解决了砂轮修整的困难,使得超精度的磨削得到了稳定的实现。
|