微弧氧化的发展方向
在工业应用的范围内,微弧氧化氧化工艺在下面几个方向的发展是值得关注的:
标准电解质的商业化及各种型号与系列电源的深化,微弧氧化电源原理图,并且通过复配电解质而扩展阀金属的范围,实验室微弧氧化电源,从而使微弧氧化的应用范围扩大;
通过神经网络及相应的控制模型对微弧氧化工艺进行优化,工艺的改进比如鼓入气泡以及超声波震动;
微弧氧化与其它技术的复合应用。微弧氧化电源
微弧氧化陶瓷膜的表面粗糙度随着氧化时间的延长近似呈线性增长。这是由于氧化膜的表面粗糙度与膜层的厚度有直接关系,而膜层的增厚过程是在---的能量条件下陶瓷膜的重复击穿过程。在氧化初期,微弧氧化电源,作用在膜层上的能量较低,产生的熔融物颗粒较少,膜层的表面粗糙度较低;随着时间的延长,膜层表面的能量密度逐渐增大,熔融的氧化产物增多,并通过微孔喷射到表面。在电解液液淬作用下,微弧氧化电源原理,氧化物冷却凝固,并发生多次击穿。在这种熔融、凝固、再熔融、再凝固的过程中,产生的氧化物颗粒黏附在陶瓷层表面的数量增多,从而增大了膜层表面的粗糙度。另外,在成膜过程中同时存在氧化膜的溶解过程,因此,若时间足够长,膜层在溶解过程中其表面粗糙度也会出现小幅度的下降。
微弧电子学的研究方向就是在电子回路中设置一个由两极和工作气体或液体组成的气固或气液固界面,通过调控两极之间的电磁场模式,以使固体表面诱发出具有“纳米微束”放电特征的微弧现象,进而实现固体表面物质以“非熔发射”机制逐层剥离,再辅助以两极之间的介质约束,达到对固体材料表面原位改性、纳米尺度逐层剥离、纳米粒径薄膜制备的目的。微弧氧化生产线、微弧氧化技术
|