采用高带宽(100khz)电涡流传感器,基于真实机组叶尖间隙测量实验台,在不同转速下开展虑及转子振动及轴位移的的叶尖间隙测量实验。文中提出通过电液比例定位系统改变转子位置以实现叶尖间隙主动控制的新方法。电液比例定位系统具有尺寸小、响应快、载荷刚度-、输出-及操作简单等优点,广泛应用于工业主动控制领域。通过优化叶顶与机匣内表面的几何形状,将叶尖间隙与转子的轴位移相关联。在不同转速条件下,基于比例积分控制规律得到电液比例定位系统的电压或电流与叶尖间隙的关系。实验结果表明,叶尖间隙随转速的升高逐渐减小,且相对误差不超过20%。后,开展了叶尖间隙测量及主动控制的精度分析与误差分析。
机床在出厂前已仔细的测量了进给系统中的间隙值,并进行了补偿。随着数控机床使用时间的增长,反向间隙还会因为运动副的磨损而逐渐增加,所以需要定期对数控机床各进给轴的反向间隙进行测量和补偿。
当在数控系统中进行反向间隙补偿后,数控系统在控制进给轴反向运动时,叶尖振幅测量系统价格,自动先让该进给轴反向运动,然后再按编程指令进行运动。即数控系统会控制伺服电机多走一段距离,这段距离等于反向补偿值,从而补偿反向间隙。
在不同的速度下测得的反向间隙是不同的,一般低速时的反向间隙值比高速时的反向间隙值在,尤其是在进给轴负荷较大,运动阻力较大时。所以有的数控系统就提供了低速g01和高速g00两种补偿值。
在数控机床的进给传动链中,联轴器、滚珠丝杆、螺母副、轴承等均存在反间间隙。机床进给轴在换向运动的时候,在一定的角度内,尽管丝杆转动,但是丝杆螺母副还要等间隙消除以后才能带动工作台运动,这个间隙就是反向间隙。
对于采用半闭环控制的数控机床,反向间隙会影响到定位精度和重复定位精度。反向间隙数值较小,对加工精度影响不大则不需要采取任何措施; 若数值过大,叶尖振幅测量设备,则系统的稳定性明显下降,加工精度明显降低,西安叶尖振幅,尤其是曲线加工,会影响到尺寸公差和曲线的一致性,此时必须进行反向间隙的测定和补偿。
|