1将破型时得到的6块荷载值从压力试验机读出单位为kn分别换算为强度值mpa,然后计算其平均值r。
2衬砌结构中钢筋锈蚀后会导致构件承载力不足,因此必须正确地掌握钢筋锈蚀后锈服缝出现后钢筋锈速度加快,从而对结构的使用功能产生较大影响,甚至危及结构的安全。因此,-的许多研究者将混凝土保护层开作为混凝土结构的寿命终结标志,混凝土保护层锈胀开裂时问的确定将成为温凝土结构耐久性评估的一个重要时问点。的各种物理力学性能变化规律。近年来国内在这方面已做了很多工作,得到了一些钢筋锈蚀后的力学性能变化规律。钢筋锈蚀的力学性能测定通常通过弱腐蚀试验来实现,也可以在实际结构中取出试样进行检测,通过测取钢筋的重量、长度、腐蚀-处的坑锈-、屈服强度、抗拉强度以及钢筋的伸长率,可绘制荷载.变形曲线。用0.9r和1.1r 来衡量每一块抗压强度值,当有小于0.9r或大于1.1r 的数值时应剔除该数值,注意衡量时应采用全值法,即 钢筋平均锈蚀率将达到55.14%。而表中数据为板内6根钢筋的平均锈蚀率,由前面的研究我们发现,随龄期的增加板内钢筋锈蚀率的不均匀性会增大,所以此时两外侧钢筋锈蚀率可能将远-过55.14%。我们知道海洋环境下,钢筋锈蚀主要以坑状锈蚀为主,细节系数蕊在-量中的贡献-势,因此蕊的变纯反映了镀锌钢筋在混凝主孛腐蚀过程的演化。细节系数蕊的豌值在第薹周期相当小,在第2周期迅速增大,表明镀锌层在高碱性混凝土中的阳极溶解过程。随后,细节系数魂的玩值趋向于减小,并在第8周期达到了值,反映了锌腐蚀产物扩散过程的贡献逐渐减小。这表明锌的表面由于腐蚀产物膜的形成而部分钝化。本次试验中也大量发现这种现象,所以当钢筋锈蚀率较大时,此时可能某些钢筋局部已经锈断或是钢筋锚固端脱落,这要在工程结构损伤调查中引起注意。0.9r和1.1r 不进行修约保留全值,若全部6块数值在0.9r~1.1r 范围内,则r 为该组数据的强度值。
3若剔除后余下不足5个数据时该组试件应作废,当剩下5个数据时对约束条件复杂的底板基础等构件,施工中应采取措施减少外约束对收缩开裂的影响。对混凝土基础底板或墙体可预先计算,在预计可能产生裂缝的地方设置-缝,使变形能释放在位置处,用以控制裂缝产生。加强混凝土振捣。混凝土必须分层分段振捣,有效排除混凝土内的泌水,消除混凝土内部孔隙,-混凝土的高密度,增加混凝土与钢筋的粘结力,增加混凝土材质的连续性和整体性,提高混凝土的强度,尤其要提高混凝土的抗拉强度。,取这5个数实际工程中一般采用u形和川形加固,当粘贴u形钢板带时,由于加固梁腹板侧面与底部钢板的锚固能得到-,只有加固梁腹板侧面顶部的钢板会出现应力集中,所以钢板的抗剪贡献较-;当采用,形侧面粘贴加固时,由于加固梁腹板侧面上下端的钢板较易发生应力集中现象,锚固长度不足,随着裂缝的产生和发展,在钢板的强度完全发挥以前就易发生粘结破坏,故加固效果较差。据的平均值r再用0.9r和1.1r去衡量5个中的每个数据,若有再被剔除,本组数据应作废,若无剔除则r即为本组强度。
-水泥基灌浆料工作性能试验结果如表3所示,水胶比w/b=0.28的拌合物较为粘稠,流动性较差,其流动度的初始值和30min保留值均不满足规范要求水胶比w/b=0.30的拌合物流动性-,流动度试验产生了很大的流动性,并且30min之后的流动度保留值仍然-,但拌合物存在较为-的泌水现象。水胶比w/b=0.29的拌合物流动性较好,并且具有-的保水性,未电化学噪音的数据分析主要有统计分析、频谱分析和小波分析等。在统计分析中,一个常用的参数是电位或电流噪音的标准偏差,用来衡量腐蚀过程的强度。另一个常用的参数是噪音电阻,定义为噪音电位和噪音电流的标准偏差之比美国grace公司70年代中期以来对钙进行了大量和系统的研究,证明钙的阻锈效率与亚相似,但没有发现对混凝土有明显的不利影响和引发碱集料反应的可能性,其对水泥的水化加速作用可用缓凝剂加以调整。。噪音电阻能够粗略地表明电化学过程的电阻,在特定条件下等于极化电阻。频谱分析是通过快速fourier变换fastfouriertransform,fft或熵法maximumentropymethod,mem将噪音的原始信号从时域变换到频域,进而通过研究功率谱密度powerspectraldensity,psd的特性来表征腐蚀过程。发现泌水现象给出了流动度随水胶比w/b变化趋势,从图中可以看出,在其他参数不变的条件下,初始流动度和30min的保留值均随w/b的变大而增大。
|