烘干房循环风机厂家实力-
通过对烘干房循环风机设计参数和s2设计参数的多次迭代,得到了一个接近设计要求的初步三维设计方案。从表2可以看出,初步设计方案的气动参数与一维设计结果吻合较好。风机设计过程中一维参数的设计精度-支持设计工作的进一步发展。表2显示了一维设计结果和初步设计的平均参数。由表2可以看出,单级风机平均半径处的负荷系数约为1.0,甚-于普通航空发动机压气机的负荷系数。同时,单级风机的反应性略大于0.5,平均负荷分布在静、动叶片上,使烘干房循环风机叶片展开中部的弯曲角度达到40度以上,扩压系数达到0.5以上。然而,在烘干房循环风机设计结果与设计目标的压力比与效率之间仍存在一定的差距,需要进一步的详细设计来弥补。从出版的文献中不难找到。考虑到轴流风机制造成本的-,扩压系数接近0.6,基本达到了无主动流量控制技术的亚音速轴流风机的设计-。然而,在烘干房循环风机设计结果与设计目标的压力比与效率之间仍存在一定的差距,需要进一步的详细设计来弥补。由于本文设计的单级风机的负荷比设计中采用的经验公式高,因此有-对每排叶片的稠度和展弦比进行调整。初步设计方案如图所示。6和7,以及表3所示的气动性能,其中载荷系数由叶尖的切线速度定义。
当烘干房循环风机叶顶间隙形状发生变化时,不可避免地会引起叶顶及其附近的吸力面和压力面流场的分布。由于叶尖间隙的存在,泄漏流将与通道内的主流混合,在吸入面顶角形成泄漏旋涡。烘干房循环风机与方案3相比,方案2具有几乎相同的-区范围,但叶尖间隙较大,有利于防止动静部件之间的摩擦,而方案6具有明显的性能退化,易于分析其损耗机理。为此,分析了三种叶尖间隙:均匀间隙、方案2和方案6。旋涡是描述旋涡运动的重要特征量,其大小可以反映旋涡的强度。这是由于叶尖涡度强度增大,泄漏流减弱,叶片前缘涡度明显增大和减小。在间隙均匀的情况下,涡量分布从叶片前缘到后缘呈下降趋势,流入量能有效地粘附在吸力面上,因此烘干房循环风机涡量相对较小。由于主流与泄漏流的相互作用,叶片顶端的涡度比吸力面大得多,较大涡度出现在吸力面拐角处和叶片顶端附近。中间叶片顶部涡度强度明显增大,这是由于间隙收缩导致叶片前缘泄漏面积增大,导致泄漏流量增大,主流与泄漏流量的混合程度增大,涡度强度增大。烘干房循环风机叶尖间隙的大小沿流动方向减小,即叶片叶尖越靠近壳体,泄漏旋涡越靠近叶片上部和中部。副作用减少。
烘干房循环风机叶尖涡度的增大可以有效地阻碍泄漏流的通过,使烘干房循环风机泄漏流与主流混合造成的损失减小,叶片前缘泄漏量的增加小于中、后缘泄漏量的增加。总体上,漏风量减少,提高了风机的性能。这与参考文献中得到的前、后缘对烘干房循环风机总压损失系数的影响是一致的。随着间隙的逐渐增大,叶顶前部的涡度强度增大,后缘的涡度强度减小,总体变化较小,泄漏量略有增加。叶片吸力前缘中部涡度强度略有增加,沿弦长方向吸力面中部和后部涡度强度基本不变。烘干房循环风机叶片前缘附近的涡度强度急剧增加。这是由于前缘点高度的变化导致的叶尖流动角度的变化。前缘点涡度强度的增加阻碍了吸力面附近的流入,也降低了主流与泄漏流的混合程度。通过与初步三维设计结果的比较,两种设计方案的气动参数径向分布一致,证实了烘干房循环风机设计过程中s2流面设计的准确性和-性。虽然方案6的进风速度有所降低,但由于叶顶和后缘附近的涡度强度降低,烘干房循环风机效率总体降低,相应的泄漏面积和泄漏流量增大。轴向速度分布可以反映转子叶片流道内的流动能力和分离尾迹区的特征。因此,转子叶片出口轴向速度分布的径向分布如图6所示,用于分析流量。由于叶根和叶顶端壁附件的附面层较厚,导致流体流过该区域后的轴向速度较小,而叶顶附件又因泄漏存在使轴向速度进一步减小。
联系时请说明是在云商网上看到的此信息,谢谢!
本页网址:https://www.ynshangji.com/xw/16602266.html
声明提示:
本页信息(文字、图片等资源)由用户自行发布,若侵犯您的权益请及时联系我们,我们将迅速对信息进行核实处理。
登录后台


