烘干房循环风机规格尺寸,冠熙-的风机厂家
不同烘干房循环风机静叶设计点90%叶片高度剖面上的压力分布。从图中不难看出,原型直叶片的进口具有明显的正攻角,端弯叶片的载荷由于分离流动而减小。由于受叶片端部弯曲的影响,三维叶片的攻角几乎为零,并且由于端部流动的---,载荷甚至略高于原型直叶片。由于叶尖泄漏流的存在,叶尖压力比与气流角图中灰色虚拟线圈所示的面积之间存在一定的偏差,但通过三-fd的修正,s2的设计趋势预测了叶尖泄漏流对气动参数径向分布的影响。研究了不同静叶对单级风扇级性能的影响。烘干房循环风机带有三个不同定子叶片的单级风扇级的效率特性。从烘干房循环风机中不难看出,端部弯曲定子可以有效地提高裕度,但由于定子损耗的增加,级效率降低了1.39%。前缘弯曲引起的叶片反向弯曲效应被叶片正向弯曲叠加所抵消。舞台效率略有提高,高点提高0.26%。失速边界越近,风扇级效率越明显。同时,烘干房循环风机转子出口顶部的静压力随着定子叶片顶部的功能力的增加而降低如图21所示,转子叶片出口直径上的静压力。在方向分布上,将定子出口处的背压设置为接近失速的原型级工况,背压为114451pa,风机的失速裕度进一步从27.1%扩大到48.8%,推迟了叶尖泄漏引起的失速。
当烘干房循环风机叶顶间隙形状发生变化时,不可避免地会引起叶顶及其附近的吸力面和压力面流场的分布。由于叶尖间隙的存在,泄漏流将与通道内的主流混合,在吸入面顶角形成泄漏旋涡。85时,_a逐渐增大,在85%叶高时达到较大值,说明该区域具有的机械能和---的循环能力。烘干房循环风机与方案3相比,方案2具有几乎相同的---区范围,但叶尖间隙较大,有利于防止动静部件之间的摩擦,而方案6具有明显的性能退化,易于分析其损耗机理。为此,分析了三种叶尖间隙:均匀间隙、方案2和方案6。旋涡是描述旋涡运动的重要特征量,其大小可以反映旋涡的强度。在间隙均匀的情况下,涡量分布从叶片前缘到后缘呈下降趋势,流入量能有效地粘附在吸力面上,因此烘干房循环风机涡量相对较小。由于主流与泄漏流的相互作用,叶片顶端的涡度比吸力面大得多,较大涡度出现在吸力面拐角处和叶片顶端附近。中间叶片顶部涡度强度明显增大,这是由于间隙收缩导致叶片前缘泄漏面积增大,导致泄漏流量增大,主流与泄漏流量的混合程度增大,涡度强度增大。烘干房循环风机叶尖间隙的大小沿流动方向减小,即叶片叶尖越靠近壳体,泄漏旋涡越靠近叶片上部和中部。副作用减少。
烘干房循环风机叶尖涡度的增大可以有效地阻碍泄漏流的通过,使烘干房循环风机泄漏流与主流混合造成的损失减小,叶片前缘泄漏量的增加小于中、后缘泄漏量的增加。总体上,漏风量减少,提高了风机的性能。这与参考文献中得到的前、后缘对烘干房循环风机总压损失系数的影响是一致的。结果表明,随着网格数量的增加,总压和效率逐渐接近样本值,337万和286万网格的总压和效率偏差分别为0。随着间隙的逐渐增大,叶顶前部的涡度强度增大,后缘的涡度强度减小,总体变化较小,泄漏量略有增加。叶片吸力前缘中部涡度强度略有增加,沿弦长方向吸力面中部和后部涡度强度基本不变。烘干房循环风机叶片前缘附近的涡度强度急剧增加。这是由于前缘点高度的变化导致的叶尖流动角度的变化。前缘点涡度强度的增加阻碍了吸力面附近的流入,也降低了主流与泄漏流的混合程度。虽然方案6的进风速度有所降低,但由于叶顶和后缘附近的涡度强度降低,烘干房循环风机效率总体降低,相应的泄漏面积和泄漏流量增大。轴向速度分布可以反映转子叶片流道内的流动能力和分离尾迹区的特征。因此,转子叶片出口轴向速度分布的径向分布如图6所示,用于分析流量。由于叶根和叶顶端壁附件的附面层较厚,导致流体流过该区域后的轴向速度较小,而叶顶附件又因泄漏存在使轴向速度进一步减小。
联系时请说明是在云商网上看到的此信息,谢谢!
本页网址:https://www.ynshangji.com/xw/17097095.html
声明提示:
本页信息(文字、图片等资源)由用户自行发布,若侵犯您的权益请及时联系我们,我们将迅速对信息进行核实处理。
登录后台


