湿式除尘风机择优
湿式除尘风机产生的原因是此次打表所用的磁性表座固定百分表的方式刚性和---性欠佳,当联轴器转到下方时,由于磁性表座、连接杆、紧固件和百分表的自重,造成百分表下坠,探头脱离测点,结果就是产生上文所述的异常读数。当检修人员按作者建议制作的表架后,在检修过程中,不再出现异常读数,检修任务按时---完成。上文阐述的引起风机振动的因素只是本人原所在企业常见的,当然不排除其他类型的风机会有其他的因素。湿式除尘风机转子不平衡和检查处理措施造成风机转子不平衡的原因主要有:叶轮出现不均匀的磨损或腐蚀;叶轮表面存在不均匀的积灰或附着物;叶片连接处存在裂纹或叶轮与轮毂、轮毂与轴颈的连接配合松动等。用测振仪测得数据,如果显示振动值径向较大而轴向较小或者振动值随转速上升而增大,都是转子不平衡引起振动的特征。
预防处理措施主要有:
一是,根据湿式除尘风机的运行工况,在进风机前工序上采取除尘措施,控制减少进入风机的粉尘等含量;
二是,定期清理风机叶轮,顺便仔细检查叶轮是否存在裂缝以及叶轮与主轴的配合情况。加米字形集流器和普通圆弧形集流器内部流场受压分布所示,湿式除尘风机米字形集流器入口压力为-8000pa,到集流器出口达到-18000pa,压差10000pa。一般来说,转子不平衡引起的振动都是叶轮表面存在不均匀的积灰或附着物产生的。对于难于清洗的湿式除尘风机叶轮转子可采用化学法清洗,如---生产中二---硫主风机叶轮,可采用氢氧化钙稀水,再用高压喷射机喷射清洗叶轮,速度快效果佳。
湿式除尘风机叶片吸力侧形成的低能流积聚的“尾迹区”,形成“射流-尾流”结构。加进气箱后,风机叶轮尾缘处的“尾迹-射流”的---,风机模型尾迹区占了比较大的空间,减少了风机流道有效面积。在小流量区,风机内部的流场分布发生偏心现象(c 处),叶轮流道e 侧,气体比较充实,叶轮流道f 侧气体分布较差,与原始风机内部流场分布相比,其湿式除尘风机叶轮流道的充盈性差。离心风机的效率曲线如图6,无进气箱情况下在流量为2.82kg/s,压力为3 106.23pa 时,达到较率68.64%;加进气箱后在流量为1.68kg/s,压力为2 775.54pa,达到较率59.45%,通过与原始风机对比可知,加进气箱后其较率降低8.19%。在湿式除尘风机内部叶轮进口处产生涡旋现象,堵塞了叶轮流道,使风机的效率和压力降低。同样由图6 效率曲线对比图可知,加进气箱后风机整体效率降低,与原始湿式除尘风机相比其区域比较窄,缩短了工作区域,且加进气箱后较优工况点向小流量区偏移。加进气箱后,离心风机的全开流量降低,与无进气箱相比,流量降低了16.9%。由图7 可知,加进气箱不仅降低了风机的全开流量,其全压也有所减少。风机性能测试采用c 型试验装置对带进气箱的离心风机进行了性能测试,测试标准按gb/t 1236-2017《工业通风机用标准化风道进行性能实验》执行。
几何模型建立与网格划分
计算模型采用掘进工作面4-72-5.6a 防爆防腐蚀的离心式通风机,其主要参数:电机功率22 kw,转速2 930 r/min,流量10 122~25 736 m3/h,全压4 152~2 330 pa。其主要由进风口、集流器、叶轮和蜗壳组成。
湿式除尘风机集流器中添加了米字形结构与环形挡环。风机结构复杂且叶片外形不规则,因此生成结构化网格比较困难,相反非结构化网格适应能力强,在处理复杂结构时有利于网格的自适应。
因此湿式除尘风机采用四面体非结构化网格。使用ansys 软件中的cfd 软件进行网格划分,加米字形集流器模型网格数1 072 503,网格节点数184 910;普通圆弧形模型网格数1 296 832,网格节点数223 847。以离心风机在掘进工作面环境下的运行工况为依据,进行湿式除尘风机参数设置:流量取22 806.54 m3/h,流速取6.335 15 m/s, 流量取7.491 3 kg/s。把pro/e 建立的几何模型导入fluent 中并对几何模型的边界条件计算参数进行设定。但是同流量下,普通圆弧形集流器比加米字形集流器风机压差大,有效值大2366pa,风机全压差加米字形比普通圆弧形小2350。其中入口类型采用速度进口,出口设为压力边界条件,本计算采用的样机是矿用式离心风机, 出口静压可以近似为0,蜗壳内壁及叶轮壁面粗糙度均取0.5,集流器、叶轮、蜗壳等各流体区域结合处的公共面采用interface边界类型面, 将叶片的压力面和吸力面以及叶轮前盘、后盘和转轴的内外表面一起定义为旋转壁面。环境压力为101 325 pa,取粉尘流体密度ρ=1.225 kg/m3。计算时采用--- 压力速度耦合方法进行。
湿式除尘风机对比分析
在额定转速下, 假定风机进出口处截面上动压静压均匀分布,对风机进口、出口压力及压差,集流器进出口压力及其压差进行统计。取点方法:在截面中心为轴心,周边均匀取了20 个点,之后计算取其平均值,可以看出,同流量下,加米字形集流器的静压和全压差分别为-4 389.0 pa 和-2 252.9 pa,而普通圆弧形集流器的压差为-982.9 pa 和-32.1 pa,相比可以看出,湿式除尘风机 加米字形集流器导流效果比普通圆弧形集流器好。金属叶轮是离心风机的重要组成部分,对于离心风机的安全运行和性能起着决定作用。但是同流量下,普通圆弧形集流器比加米字形集流器风机压差大,有效值大2 366 pa,风机全压差加米字形比普通圆弧形小2 350.8 pa,减少的这部分能量用于摩擦---。说明集流器经过改造提高了粉尘流的导流能力,提高了风机的性能。
本文对掘进工作面湿式除尘风机集流器结构进行了改进研究。并对改进前、后的结构的集流器导流效果做了理论分析。然后应用fluent 流体软件对其进行了数值建模分析, 充分认识离心分机内部流场流体的流动规律,并得到集流器及整个风机的压力云图,截面所受阻力云图,并取点做了统计分析。采用消声蜗壳后,被吸收的声能多,被反射的声能少,其声场的声压级就会降低。研究结果表明:湿式除尘风机加米字形集流器使集流器进出口压差增加,明显地起到对粉尘流场的导流作用。但是集流器由于增加米字形支撑架,造成集流器截面的摩擦力增大,消耗了风机的一部分动能。但对大型除尘离心风机总体来看,采用该结构---减少制造难度和加工成本,提高了经济效益。
联系时请说明是在云商网上看到的此信息,谢谢!
本页网址:https://www.ynshangji.com/xw/19934352.html
声明提示:
本页信息(文字、图片等资源)由用户自行发布,若侵犯您的权益请及时联系我们,我们将迅速对信息进行核实处理。
登录后台


