珠海低压伺服驱动器价格-「多图」
南调机电设备——变频器与伺服驱动器的工作原理
基本的伺服系统包括伺服执行元件电机、液压缸、反馈元件和伺服驱动器。若想让伺服系统运转顺利还需要一个上位机构,plc、以及专门的运动控制卡,工控机+pci卡,以便给伺服驱动器发送指令。
两者的工作原理
变频器的调速原理主要受制于异步电动机的转速n、异步电动机的频率f、电动机转差率s、电动机极对数p这四个因素。转速n与频率f成正比,只要改变频率f即可改变电动机的转速,当频率f在0-50hz的范围内变化时,电动机转速调节范围非常宽。
变频调速就是通过改变电动机电源频率实现速度调节的。主要采用交—直—交方式,先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。整流部分为三相桥式不可控整流器,逆变部分为igbt三相桥式逆变器,且输出为pwm波形,中间直流环节为滤波、直流储能和缓冲无功功率。
伺服系统的工作原理简单的说就是在开环控制的交直流电机的基础---速度和位置信号通过旋转编码器、旋转变压器等反馈给驱动器做闭环负反馈的pid调节控制。再加上驱动器内部的电流闭环,通过这3个闭环调节,使电机的输出对设定值追随的准确性和时间响应特性都提高很多。伺服系统是个动态的随动系统,达到的稳态平衡也是动态的平衡。
广州市南调机电设备有限公司为你解答:变频器与伺服驱动器各有什么特点,有什么区别呢?
有需要了解伺服驱动器的前来询问!
两者的共同特点
交流伺服的技术本身就是借鉴并应用了变频的技术,在直流电机的伺服控制的基础上通过变频的pwm方式模仿直流电机的控制方式来实现的,也就是说交流伺服电机必然有变频的这一环节:变频就是将工频的50、60hz的交流电先整流成直流电,然后通过可控制门极的各类晶体管igbt,igct等通过载波频率和pwm调节逆变为频率可调的波形类似于正余弦的脉动电,由于频率可调,所以交流电机的速度就可调了n=60f/p,n转速,f频率,p极对数。
两者的区别
1. 过载能力不同。伺服驱动器一般具有3倍过载能力,可用于克服惯性负载在启动瞬间的惯性力矩,而变频器一般允许1.5倍过载。
2. 控制精度。伺服系统的控制精度远远高于变频,通常伺服电机的控制精度是由电机轴后端的旋转编码器-。有些伺服系统的控制精度甚至达到1:1000
3. 应用场合不同。变频控制与伺服控制是两个范畴的控制。前者属于传动控制领域,后者属于运动控制领域。一个是满足一般工业应用要求,对性能指标要求不高的应用场合,追求的是低成本。另一个则是追求-、、高响应。
4. 加减速性能不同。在空载情况下伺服电机从静止状态加工到2000r/min,用时不会超20ms。电机的加速时间跟电机轴的惯量以及负载有关系。通常惯量越大加速时间越长。
广州市南调机电设备有限公司为行业用户积累了大量的关键性技术和解决方案,大量的工程实践经验,为新老客户不断创造新的价值。
伺服电机控制器
伺服电机控制器是数控系统及其他相关机械控制领域的关键器件,一般是通过位置、速度和力矩三种方式对伺服马达进行控制,实现-的传动系统定位。 伺服控制相关技术已经成为关系装备技术水平的重要参考。
伺服电机如何正确安装
1安装方向 伺服驱动器的正常安装方向:垂直直立方向
2安装固定 安装时,上紧伺服驱动器后部的 4 个 m4 固定螺丝。
3安装间隔 伺服驱动器之间以及与其他设备间的安装间隔距离,请参考图 2.1,注意:图上表明的是尺寸,为了-驱动器的使用性能和寿命,请尽可能的留有充分的安装间隔。
4散热 伺服驱动器采用自然冷却方式,在电气控制柜内必须安装散热风扇,-有垂直方向的风对伺服驱动器的散热器散热。
5安装注意事项 安装电气控制柜时,防止粉尘或铁屑进入伺服驱动器内部。
有什么注意事项
1 u、v、w 的接线必须与电机端子 2、3、4 一一对应,注意:不能用调换三相端子的方法来使电机反转,这一点与异步电动机完全不同。
2由于伺服电机流过高频开关电流,因此漏电流相对较大,电机接地端子与伺服驱动器接地端子 fg 连接一起,并-接地。 3因为伺服驱动器内部有大容量的电解电容,所以即使切断了电源,内部电路中仍有高电压。在电源被切断后,少等待 5 分钟以上,才能接触驱动器和电机。
4接通电源后,操作者应与驱动器和电机保持一定距离。
5长时间不使用,请将电源切断。
6旋转方向定义:面对电机轴伸,转动轴逆时针旋转为 ccw 方向,转动轴顺时针旋转为cw 方向。一般称 ccw 为正方向,cw 为负方向。
了解更多西门子、plc、伺服、变频器...等等相关知识可以前来咨询
驱动器故障引起跟随误差超差报警维修 故障现象:某配套siemens primos系统、6ra26**系列直流伺服驱动系统的数控滚齿机,开机后移动机床的z轴,系统发生“err22跟随误差超差”报警。
分析与处理过程:数控机床发生跟随误差超过报警,其实质是实际机床不能到达指令的位置。引起这一故障的原因通常是伺服系统故障或机床机械传动系统的故障。由于机床伺服进给系统为全闭环结构,无法通过脱开电动机与机械部分的连接进行试验。为了确认故障部位,维修时首先在机床断电、松开夹紧机构的情况下,手动转动z轴丝杠,未发现机械传动系统的异常,初步判定故障是由伺服系统或数控装置---引起的。为了进一步确定故障部位,维修时在系统接通的情况下,利用手轮少量移动z轴(移动距离应控制在系统设定的允许跟随误差以内,防止出现跟随误差报警),测量z轴直流驱动器的速度给定电压,经检查发现速度给定有电压输入,其值大小与手轮移动的距离、方向有关。由此可以确认数控装置工作正常,故障是由于伺服驱动器的---引起的。检查驱动器发现,驱动器本身状态指示灯无报警,基本上可以排除驱动器主回路的故障。考虑到该机床x、z轴驱动器型号相同,通过逐一交换驱动器的控制板确认故障部位在6ra26**直流驱动器的a2板。根据siemens 6ra26**系列直流伺服驱动器的原理图,逐一检查、测量各级信号,后确认故障原因是由于a2板上的集成电压比较器n7(型号:lm348)---引起的:更换后,机床恢复正常。
联系时请说明是在云商网上看到的此信息,谢谢!
本页网址:https://www.ynshangji.com/xw/21176889.html
声明提示:
本页信息(文字、图片等资源)由用户自行发布,若侵犯您的权益请及时联系我们,我们将迅速对信息进行核实处理。
登录后台


