山东热循环风机给您好的建议,冠熙风机型号齐全
当热循环风机改进后的方法不能达到预期效果时,采用现代风机设计理论完成风机的设计,详细介绍了风机各部件结构参数的选择原则。叶片成形方法是基于叶轮流道横截面积逐渐变化的原理。建立了风机叶片型线成形的数学模型。根据该数学模型,采用“双圆弧”拼接法完成了叶片型线的绘制。建立风机三维模型后,对网格进行划分,热循环风机采用n-s方程。结合sstk-u湍流模型,对斜槽风机的原型风机、改进风机和设计风机进行了流量计算。将原型风机的计算结果与原始测量数据进行了比较,详细分析了sstk-u湍流模型计算结果的准确性,即离心风机的数值计算。湍流模型的选择提供了---的参考。热循环风机的瞬态计算方法,分析了瞬态计算中时间步长的选择原则。采用瞬态数值方法对新设计的风机内部流动进行了数值模拟。在瞬态计算结果稳定后,利用fw-h模型对设计风机的气动噪声进行了计算。本文采用“风机三维建模-斜槽风机样机数值计算-样机内部流动特性分析-风机改进的确定和设计方案-噪声计算的瞬态法”的技术路线,完成了风机的改进和设计。斜槽风机。叶片开槽使风机的总压和效率增加,但总压明显增加,效率增加不大。
本文采用n-s方程和sstk-u湍流模型计算了热循环风机在不同工况下的稳态,并根据公式计算了设计工况下离心风机的压力、轴功率和效率。在得到风机性能参数的数值结果后,将不同工况下数值结果的误差值与样机原始测量结果进行了比较。在完成热循环风机三维模型的建立、计算域的离散化网格化和边界条件的定义后,将热循环风机原型的不同工况进行了数值计算,并将其浇注到ansys fluent。风机数值计算和测量的效率特性曲线表明,斜槽离心风机的设计流量为0.17kg/s,在设计工况下,风机的计算效率为48.1%。斜槽离心风机偏离设计工况时,小流量工况下效率急剧下降,大流量工况下效率变化缓慢,但效率仅为47%。斜槽离心风机的压力特性曲线表明,离心风机的总压力没有单调变化,但随着风机流量的增加,斜槽离心风机的总压力减小。非单调压力特性曲线表明,离心风机阻力变化较大时,风机风量变化较大,风机稳定工作面积较小。本文主要完成设计热循环风机的稳态和瞬态数值计算,在瞬态数值计算结果稳定后,采用fw-h模型计算设计风机的气动噪声值。
因此,热循环风机选择了lhs方法对离心风机的实验数据进行采集。热循环风机在实验的初始阶段,收集的数据不应超过总实验数据的25%。假设收集的总数据n=10天d为输入变量的维数,初始实验中收集的实验数据n 0应满足n 0<0.25n=2.5d的要求,因此本文采用n 0=0。实验初期采用25n作为实验数据。数据采集的硬件实现方案如图1所示。首先,用传感器测量被测通风机的入口压力、温度、流量和转速。然后将测量数据通过总线传输到daq数据采集系统。热循环风机的daq数据采集系统通过i/o设备将数据打包到上位机中。由于变量之间的维数差异,采集到的数据没有直接应用于模型训练,因此有---对数据进行规范化,即将无量纲数据转换为无量纲数据,并将采集到的数据映射到[0,1]的范围内,以提高模型的收敛速度和精度。模型。模型训练和模型验证离心风机性能预测模型的训练结构如图2所示。该结构可分为两部分:数据采集与处理和模型训练。前者主要完成实验数据的采集和处理,后者实现了性能预测模型的建立和验证。首先,采用lhs方法采集离心风机的实验数据入口温度、压力、流量和风机转速,并对热循环风机数据进行处理,用于lssvm模型。在远场噪声计算中,随着受流点到叶轮中心距离的增加,风机噪声值呈下降趋势。
联系时请说明是在云商网上看到的此信息,谢谢!
本页网址:https://www.ynshangji.com/xw/22795969.html
声明提示:
本页信息(文字、图片等资源)由用户自行发布,若侵犯您的权益请及时联系我们,我们将迅速对信息进行核实处理。
登录后台


