枣庄离心通风机厂家货源「山东冠熙」
为研究后离心通风机厂家叶轮的流场及噪声问题,采用三维建模软件ug对现有叶轮进行逆向建模,提取出叶轮的几何模型,运用hypermesh对叶轮模型进行网格划分,然后采用fluent软件模拟了叶轮三维粘性定常流动特性,分析了叶轮内部流动情况,在此基础上对叶轮模型进行噪声分析,得到流场模拟和噪声分析结果,为叶轮优化设计提供理论依据。先单独分析了进气箱内部流场特性,然后对进气箱与风机进行一体化分析,研究进气箱对离心风机性能的影响。
离心通风机厂家作为干燥、通风类家电产品的重要组成部件,其性能直接影响着家电产品的高低。随着现代生活对节能、等要求日益提高,开发、低噪风机成为必然趋势。离心式通风机的工作介质为气体,工作过程中会产生气动噪声、机械噪声和气固耦合噪声,其中气动噪声是主要噪声,约占到总噪声的45%左右。风机气动噪声主要由离散噪声旋转噪声和湍流噪声组成。高速高压离心风机旋转噪声较高,低速低压风机以湍流噪声为主。且基频噪声和宽频噪声在风机中不同程度的存在。其次,使两联轴器轴线同高,即先调整左右径向偏差,---调整上下高差,直至符合本文的允许值。目前对离心式通风机降噪研究还处于试验为主的研究阶段,但试验研究成本较大、周期较长,这对离心通风机厂家产品开发非常不利。此外,影响离心式通风机气动噪声的因素众多,设计所得结果的降噪机理难以被系统揭示。数值模拟方法能够提供风机的内部流场信息和噪声分布情况,有利于准确认识离心式通风机噪声产生机理和降噪原理,为进一步推广降噪设计的方法提供依据。所以,对离心式通风机数值模拟的研究是非常---的。
以4-73no.8d 离心风机为研究对象,对比了适配进气箱的两种不同导流器,并测试了噪声;一种包含复杂形状进气箱与旋转叶轮一体的离心通风机厂家的算法,可以---的揭示斜流风机内部流动的特征;对电站锅炉离心通风机厂家进气箱三维粘性流场进行了数值模拟,分析了进气箱内气体流动特性的影响,并对进气箱的设计和改造提出了建议;li jingyin对有无进气箱的轴流风机进行了数值分析,并着重分析了进气箱内部的流动对轴流风机效率下降的影响。本文基于cfx 软件,对有无进气箱两种离心风机,分别建立了数值计算模型,进行了三维数值模拟分析,研究离心通风机厂家其内部流场特性。并与实验的实测数据进行对比分析,验证数值计算结果的合理性。本文采用一种特殊设计的进气箱,这种形式的进气箱削弱了气流在90°转弯过程中的能量损失,在转弯处气流的平稳,加速过程的均匀。该进气箱进口为矩形,出口为与集流器相连的圆形。另外,有些管道补偿器如填料式补偿器、波形补偿器也可以起到减震作用。通过solidworks 建立的两种形式的三维模型,两种模型除进气箱外其他尺寸相同。
离心通风机厂家进气箱出口处叶轮进口处水平横向截面速度的矢量图及云图,从图中可以看出,虽然其出口几何结构是对称的,然而在出口处其流速为不均匀分布,靠进气方向处流速较高,被进气方向速度较低,气流经弯头转弯后,流速分布比较紊乱,从而使得进入风机叶轮的流速不均匀,与文献的研究结果一致,这是导致离心风机效率低的原因之一。为符合实际运行状态,离心通风机厂家进出口边界条件设置为压力入口和压力出口,出口压降与动能成正比,从而避免在进口和出口定义一致的速度分布[15]。
进气箱内的流动损失
进气箱的流动损失可以通过数值模拟计算分析,为理论研究提供参考,其大小为进气箱出口截面的动压乘以损失系数。由于进气箱出口速度大致与叶轮的进口速度一样。
进气箱对离心风机性能的影响可知在进气箱出口与离心通风机厂家叶轮进口处存在涡旋现象,研究中发现该涡旋与流量大小有关,在大流量区涡旋不明显,且位于进气箱侧的叶轮叶套的进口处,随着流量的减小,涡旋形状的明显,并向进气箱出口方向b侧偏移。可以看出,原始风机叶轮流道内靠近出口处形成涡旋,主要原因是叶片出口附近存在较为---的边界层分离现象。c组合改进风机全压降低了约36.8pa,效率下降了约3.18%。离心通风机厂家叶片表面存在附面层,随着叶轮旋转,吸力面和压力面附面层的结构和形态是不同的。
本文以离心通风机厂家为研究对象,对4 种组合方式的消声蜗壳进行了试验测量,研究了每一种组合的降噪效果及对风机气动性能的影响。试验在符合iso3745 标准的半消声室中进行,其四周墙壁及屋顶均装有消声尖劈,消声室截止频率100 hz,本底噪声为26 db( a) 。试验装置和测试系统按照---gb/t1236-2000《工业通风机用标准化风道进行性能试验》和gb/t2888-91《离心通风机厂家和罗茨鼓风机噪声测量方法》的要求设计、制造、测试。由效率曲线图可知,大流量区计算结果比实测结果偏高,小流量区计算结果比实测结果偏低,说明计算结果与实测结果吻合。离心通风机厂家进气口端连接符合gb/t 1236 规定的风机性能试验进气试验装置。使用智能压力风速风量仪测出pl3 位置的静压和pl5 处的流量压差,然后再根据其他测量的数据算出风机全压和静压试验装置。
试验采用进口堵片方式调节流量,从大流量至小流量共选取8 个工况点,分别测试每个工况点的风机流量、压力、功耗和噪声。后计算风机标况---量、全压、全压效率、总a 声级。本试验风机的结构简图,在风机蜗板和前后盖板上可分别固定穿孔钢板,穿孔板与蜗壳本体之间形成10 mm 的空腔,空腔内填充超细玻璃棉,形成消声蜗壳。以此形成4 种消声蜗壳组合: a 组合,周向蜗板有消声层;b 组合,蜗壳后盖板有消声层; c 组合,周向蜗板和后盖板有消声层; d 组合,周向蜗板和前盖板有消声层。可以看出,原始风机叶轮流道内靠近出口处形成涡旋,主要原因是叶片出口附近存在较为---的边界层分离现象。选用的穿孔板采用板厚1 mm,孔径6 mm,穿孔率约为22%。各种加装吸声结构组合,风机蜗壳内部的通流结构尺寸和原风机一致。
联系时请说明是在云商网上看到的此信息,谢谢!
本页网址:https://www.ynshangji.com/xw/23002287.html
声明提示:
本页信息(文字、图片等资源)由用户自行发布,若侵犯您的权益请及时联系我们,我们将迅速对信息进行核实处理。