潍坊排尘离心通风机货源好价格「山东冠熙」
某车间排尘离心通风机至2016年止已运行近8 年,振动一直偏大,已困扰生产多年。即使是更新了叶轮总成,并在联轴器对中性符合允差的情况下,运行时前后两轴承位壳振实测振动速度有效值分别达到了3.0 mm/s 和3.6 mm/s 左右,这是属于“可容忍”的范围,但不宜长期运行工作。经我设备人员分析,认为振动大的原因有:一是混凝土基础过于单薄,重量不足,且运行时基础周围地板有明显的颤动;本文以排尘离心通风机为研究对象,对4种组合方式的消声蜗壳进行了试验测量,研究了每一种组合的降噪效果及对风机气动性能的影响。二是预埋地脚螺栓有松动迹象。经上级研究,决定趁当年大修时间充足的机会,对上述存在问题---,破除旧基础后,按本文前述处理措施重新设计、施工新的混凝土基础和预埋地脚螺栓。
开机正常生产后,该排尘离心通风机轴承位壳振实测振动速度有效值分别降到了0.45 mm/s 和0.52 mm/s,属“---”级别。安装精度不达标及其检查处理措施安装精度主要是指风机轴与驱动电机轴的同心度,即对中性。离心式风机联轴器的同心度要求---。如果联轴器没有找正,或是找正达不到要求,引起排尘离心通风机振动将不可避免。应注意的是,即使原来同心度已经符合要求了,但是风机运行一段时间后,由于各种原因,同心度会也会发生变化,所以应注意定期检查同心度,如发现同心度超过允许偏差了,要立即重新找正。因此,当风机发生异常的振动故障时,检查联轴器的对中情况是必不可少的。5%,修正的k-ε模型,各流量工况下排尘离心通风机出口静压计算值与试验值吻合,其性能曲线趋于重合,两者误差值明显减小,且较大误差降低至3%,充分验证了所采用的数值计算模型修正方法的可行性,同时为下文排尘离心通风机性能的准确度和---性预测提供支撑。
排尘离心通风机产生的原因是此次打表所用的磁性表座固定百分表的方式刚性和---性欠佳,当联轴器转到下方时,由于磁性表座、连接杆、紧固件和百分表的自重,造成百分表下坠,探头脱离测点,结果就是产生上文所述的异常读数。当检修人员按作者建议制作的表架后,在检修过程中,不再出现异常读数,检修任务按时---完成。排尘离心通风机转子不平衡和检查处理措施造成风机转子不平衡的原因主要有:叶轮出现不均匀的磨损或腐蚀;叶轮表面存在不均匀的积灰或附着物;在设计集流器的结构时,应---较大程度地符合金属叶轮附近气流的流动情况,同时还应---集流器内气流的平稳运行。叶片连接处存在裂纹或叶轮与轮毂、轮毂与轴颈的连接配合松动等。用测振仪测得数据,如果显示振动值径向较大而轴向较小或者振动值随转速上升而增大,都是转子不平衡引起振动的特征。
预防处理措施主要有:
一是,根据排尘离心通风机的运行工况,在进风机前工序上采取除尘措施,控制减少进入风机的粉尘等含量;
二是,定期清理风机叶轮,顺便仔细检查叶轮是否存在裂缝以及叶轮与主轴的配合情况。一般来说,转子不平衡引起的振动都是叶轮表面存在不均匀的积灰或附着物产生的。对于难于清洗的排尘离心通风机叶轮转子可采用化学法清洗,如---生产中二---硫主风机叶轮,可采用氢氧化钙稀水,再用高压喷射机喷射清洗叶轮,速度快效果佳。但上述边界条件只针对高雷诺数而言,在固体壁面附近,流体粘性应力将取代湍流雷诺应力,并在临近固体壁面的粘性底层占主要作用。
排尘离心通风机在大流量区计算值比实测值偏高,小流量区计算值比实测值偏低,但是整体上计算结果与实测结果基本吻合。由效率曲线图可知,大流量区计算结果比实测结果偏高,小流量区计算结果比实测结果偏低,说明计算结果与实测结果吻合。通过实验值与计算值的对比,cfx 软件的数值模拟结果与实测结果一致,由此验证了采用cfx 软件对带进气箱的离心风机的数值模拟是---的。随着经济的发展以及技术的发展,老旧的离心风机已经不能适应现代化发展的需要。
试验噪声分析
离心风机的噪声按照流体动力声源的发声机制,分为三类:1单极子,2偶极子,3)四极子,风机正常工作状态下产生的噪声主要来源于偶极子源。根据gb/t2888-2008《风机和罗茨鼓风机噪声测量方法标准》对有无进气箱离心风机的噪声进行测试。试验地点:浙江上风高科专风实业有限公司cnas 检测中心;由效率曲线图可知,大流量区计算结果比实测结果偏高,小流量区计算结果比实测结果偏低,说明计算结果与实测结果吻合。采用声级计对风机出口处的噪声进行测试,测试方式及仪器。测量时,除地面外无其他的反射条件,测点位置d 距地面的高度与风机出口中心持平,水平方向上与出气口轴线成45° ,距离出气口中心l=1m。
排尘离心通风机的噪声在小流量区,带进气箱的离心风机噪声低于不带进气箱,随着流量的增加,带进气箱的风机噪声---提高,在大流量区,明显的高于不带进气箱的噪声。
排尘离心通风机对比分析
在额定转速下, 假定风机进出口处截面上动压静压均匀分布,对风机进口、出口压力及压差,集流器进出口压力及其压差进行统计。取点方法:在截面中心为轴心,周边均匀取了20 个点,之后计算取其平均值,可以看出,同流量下,加米字形集流器的静压和全压差分别为-4 389.0 pa 和-2 252.9 pa,而普通圆弧形集流器的压差为-982.9 pa 和-32.1 pa,相比可以看出,排尘离心通风机 加米字形集流器导流效果比普通圆弧形集流器好。但是同流量下,普通圆弧形集流器比加米字形集流器风机压差大,有效值大2 366 pa,风机全压差加米字形比普通圆弧形小2 350.8 pa,减少的这部分能量用于摩擦-。说明集流器经过改造提高了粉尘流的导流能力,提高了风机的性能。同时,由于蜗壳张开度扩大能够抑制流动分离,使蜗舌附近区域的旋涡强度及其影响区域减小,从而有效地降低了多翼离心风机噪声2。
本文对掘进工作面排尘离心通风机集流器结构进行了改进研究。并对改进前、后的结构的集流器导流效果做了理论分析。然后应用fluent 流体软件对其进行了数值建模分析, 充分认识离心分机内部流场流体的流动规律,并得到集流器及整个风机的压力云图,截面所受阻力云图,并取点做了统计分析。研究结果表明:排尘离心通风机加米字形集流器使集流器进出口压差增加,明显地起到对粉尘流场的导流作用。但是集流器由于增加米字形支撑架,造成集流器截面的摩擦力增大,消耗了风机的一部分动能。但对大型除尘离心风机总体来看,采用该结构---减少制造难度和加工成本,提高了经济效益。综上所述,本文通过结构优化对离心风机金属叶轮稳定运行影响进行研究,简要分析了各部件结构优化对离心风机金属叶轮稳定运行的影响。
联系时请说明是在云商网上看到的此信息,谢谢!
本页网址:https://www.ynshangji.com/xw/24134878.html
声明提示:
本页信息(文字、图片等资源)由用户自行发布,若侵犯您的权益请及时联系我们,我们将迅速对信息进行核实处理。