天津铝压铸价格-「鑫乾」
表面改性技术指的是利用物理或者化学方法将模具表层性能改变
表面改性技术。 表面改性技术指的是利用物理或者化学方法 将模具表层性能改变,一般来说有两种:表面热、 扩、 渗技术和表面 激光处理技术。表面热、 扩、 渗技术包括渗碳、 渗氮、 渗硼以及碳氮共渗、 硫碳氮 共渗等。 渗碳有助于强化模具表面硬度。 渗碳工艺方法有固体粉末 渗碳、 气体渗碳、 以及真空渗碳、 离子渗碳。 真空渗碳和离子渗碳渗 速快、 渗层均匀、 碳浓度梯度平缓以及工件变形小。 渗氮工艺简便, 模具氮化层硬度高、 耐磨磨性好,有较好的抗粘模性能。 渗硼提升表 面性能明显,模具硬度、 耐磨性、 耐腐蚀性和抗粘连性明显提高, 但是工艺条件苛刻。激光处理模具表面是近三十年兴起的技术,以两种方式来提升 模具表面性能。 一种是激光融化模具表面成型,之后再与渗碳、 渗 氮、 镀层等工艺相结合。 另一种方法是将激光处理表面技术与一些 物理性质较好的金属辅料相结合,使其融入压铸模具表面。
热疲劳裂纹是压铸模常见的失效形式
疲劳裂纹热疲劳裂纹是压铸模常见的失效形式,占失效比例大。压铸过程中压铸模在300~8000c的热循环及脱模剂导致的拉应力与压应力交变循环,反复经受急冷、急热所造成的热应力,导致在型腔表面或内部热应力集中处逐渐产生微裂纹,其形貌多数呈现网状,称龟裂,也有呈状。热应力使热疲劳裂纹继续扩展成宏观裂纹。从而导致压铸模失效。热疲劳裂纹是热循环应力、拉伸应力和塑性应变共同作用而产生的。塑性应变促进裂纹的形成,拉伸应力促进裂纹的扩展与延伸。从微观分析,热疲劳裂纹在晶界碳化物、夹杂物集中区萌生,应选钢质洁净、显微组织均匀的模具钢有较高的热疲劳抗力。
表面形成覆盖层强化气相沉积技术
表面形成覆盖层强化气相沉积技术:气相沉积技术是利用气相中发生的物理、化学过程,改变工件表面成分,在表面形成具有特殊性能(超硬耐磨或特殊的光学、电学性能)的金属或化合物涂层的新技术。化学气相沉积(cvd)的沉积物由引入高温沉积区的气体离解所产生。cvd处理的模具形状不受---,可在含碳量大于0.8%的工具钢、渗碳钢、高速钢、铸铁以及硬质合金等表面上进行。在模具上涂覆tic、tin覆层的工艺,其覆层硬度---3,000hv,使模具耐磨性和抗摩擦性能提高。cvd处理后还需要进行淬火回火。采用tic、tin的复合涂层,使模具寿命---提高。
电火花加工是铝合金压铸模具中常用的加工方式之一
电火花加工电火花加工是铝合金压铸模具中常用的加工方式之一。相较于其他加工方法,此种加工方式在具体应用过程中呈现出高加工精度、高自动化水平以及便于加工具有不规则形状的零件等优势。尽管如此,加工时释放的火花具有着高温高压特点,且工作液在闲置状态下温度会急剧下降,进而造成钢材表面被划分为热重熔区与热影响区。所谓的热重熔区是指表层金属被被放电时释放的高温所融化,由于熔液未被全部抛出,且滯留的熔液随着工作液的冷却而出现了凝固。热重熔区多分布在钢材表面的上层。相较于热重熔区热影响层地金属材料在受到高温烧灼后,并未发生熔化现象,只是材料的金相组织发生了相应变化。通过大量实践,我们发现:热模工序也会加重热重熔区以及热影响区内模具龟裂失效风险。经过电火花加工后的铝合金压铸模具在通过煤气炉烤模后,尽管模具的金相组织并不会发生相应变化,但是热重熔区却会出现轻微的裂痕,且当裂痕延伸到热影响区后微裂纹范围就会再次加大,进而加大了模具龟裂失效程度。
联系时请说明是在云商网上看到的此信息,谢谢!
本页网址:https://www.ynshangji.com/xw/24590431.html
声明提示:
本页信息(文字、图片等资源)由用户自行发布,若侵犯您的权益请及时联系我们,我们将迅速对信息进行核实处理。