松下伺服电机应用案例来电咨询「日弘忠信」
---与通用的松下伺服马达驱动器市场概况
近年来,---伺服电机驱动器成为市场亮点。据深圳日弘忠信介绍,变频器、伺服驱动器、步进驱动器、无刷直流电机驱动可以统称为电机驱动器。按应用分,我们把电机驱动器又分成通用电机驱动器和---电机驱动器,通用电机驱动器不针对某种应用,在机床、纺织、包装、印刷等各种制造行业中得到广泛应用。伺服电机从静止加速到其额定转速3000rpm仅需几毫秒,可用于要求快速启停的控制场合。
据了解,目前通用电机驱动器主要是松下伺服电机驱动器、三菱伺服驱动、安川伺服驱动、富士伺服驱动和日立伺服驱动,它们都具有适应性强,通用性能好、---、货源充足等优点,在覆盖率---。
---电机驱动器相对于通用电机驱动器市场表现得---,成为电机驱动器市场的亮点,比较---的应用有:电动车和轨道交通电机驱动器,抽油机电机驱动器,电梯---驱动器和电梯一体机 ,注塑机---驱动器以及空气压缩机,水泵,风机---驱动器。
目前,市场上---伺服电机驱动器有:电动车和轨道交通电机驱动器、抽油机电机驱动器、空气压缩机、水泵和风机---驱动器、一体机、电梯---驱动器和电梯一体机、注塑机---驱动器等。
关于---与通用的松下伺服马达驱动器市场概况就介绍到这了,如需了解更多,请关注深圳日弘忠信是松下伺服电机,深圳日弘忠信是松下伺服电机,主营松下a6伺服电机、400w/700w松下伺服电机等各型号库存-
伺服电机的选型步骤及注意事项
伺服电机在精度、转速都---的强,伺服电机适应性,抗过载能力强,每种型号伺服电机的规格项内均有额定转矩、大转矩及伺服电机惯量等参数各参数与负载转矩及负载惯量间---有相关联系存在,选用伺服电机的输出转矩应符合负载机构的运动条件要求,如加速度的快慢、构的重量;机构的运动方式(水平、垂直旋转)等;运动条件与伺服电机输出功率。驱动器的英文名叫driver,指的是驱动某类机械设备的一个驱动硬件,常用于机械加工设备等。
伺服电机是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。每种型号伺服电机的规格项内均有额定转矩、转矩及伺服电机惯量等参数各参数与负载转矩及负载惯量间---有相关联系存在,选用伺服电机的输出转矩应符合负载机构的运动条件要求,如加速度的快慢、构的重量;机构的运动方式(水平、垂直旋转)等;运动条件与伺服电机输出功率无直接关系,但是一般伺服电机输出功率越高,相对输出转矩也会越高。可对应行业的---定位分辨率指令(以脉冲串指令为例),指令输入、反馈输出都实现了4mpps的高速对应。
因此不但机构重量会影响伺服电机的选用,运动条件也会改变伺服电机的选用。惯量越大时,需要越大的加速及减速转矩,加速及减速时间越短时,也需要越大的伺服电机输出转矩。选用伺服电机规格时,依下列步骤进行。
一、伺服电机的选型步骤
1、明确负载机构的运动条件要求,即加/减速的快、运动速度、机构的重量、机构的运动方式等。
2、依据运行条件要求选用合适的负载惯量计算公式计算出机构的负载惯量。
3、依据负载惯量与伺服电机惯量选出适当的假选定伺服电机规格。
4、结合初选的伺服电机惯量与负载惯量,计算出加速转矩及减速转矩。
5、依据负载重量、配置方式、摩擦系数、运行效效率计算出负载转矩。
6、初选伺服电机的大输出转矩必须大于加速转矩+负载转矩;如不符合条件,必须选用其他型号计算验证直至符符合要求。
7、依据负载转矩、加速转矩、减速转矩及保持转矩计算出连续瞬时转矩。
8、初选伺服电机的额定转矩必须大于连续瞬时转矩,如,如果不符合条件,必须选用其他型号计算验证直至符合要求。
9、完成选定。
二、伺服电机选型的注意事项
1、如果选择了带电磁制动器的伺服电机,电机的转动惯量会增大,计算转矩时要进行考虑。
2、有的伺服驱动器有内置的再生制动单元,但当再生制动较频繁时,可能引起直流母线电压过高,这时需另配再生制动电阻。再生制动电阻是否需要另配,配多大,可参照相应样本的使用说明来配。
3、有些系统要维持机械装置的静止位置,需电机提供较大的输出转矩,且停止的时间较长。如果使用伺服的自锁功能,往往会造成电机过热或放大器过载,这种情况就要选择带电磁制动的电机。
4、有些系统如传送装置,升降装置等要求伺服电机能尽快停车,而在故障、急停、电源断电时伺服器没有再生制动,无法对电机减速。同时系统的机械惯量又较大,这时对动态制动器的要依据负载的轻重、电机的工作速度等进行选择。
以上就是关于伺服电机选型的一些步骤,以及伺服电机在选型的时候需要注意的事项伺服电机在精度、转速都---的强,伺服电机适应性,抗过载能力强的优势。
松下伺服电机的几个小常识
1、松下伺服电机选型的问题,究竟什么时候选择低惯量,什么时候选择中惯量?
答:通常情况下,为了满足伺服系统的高响应性,一般松下伺服电机都是选用小惯量的电机,又因为松下伺服电机的额定输出力矩或额定输出功率越大一般其转子转动惯量也越大,所以单纯讨论电机转动惯量的大小是没有意义的,真正应该讨论的是松下伺服电机的额定输出力矩与松下伺服电机的转动惯量的比值,或者说同样额定输出力矩同样额定输出功率的电机的转动惯量的大小。伺服电机的选择有以下四点:1、电机轴上负载力矩的折算和加减速力矩的计算。松下伺服电机一般选择小惯量的松下伺服电机以满足较高的动态响应。当然根据松下伺服电机的具体应用环境,也可以选择中惯量,高惯量的松下伺服电机,比如松下伺服电机作为主轴,对于快速响应的要求不那么高的时候,但对速度控制要求非常确,并且经常要求运行在低速低频状态下,还要求能够有编码器信号输出的时候。而这个时候变频器却不能胜任。
2、松下伺服电机飞车的问题?
答:松下伺服电机飞车这种现象比较常见,也的确非常危险,关于松下伺服电机飞车的问题主要是四个方面的经验。是因为外界干扰引起的松下伺服电机高速运转,这种情况都是伺服驱动器为位置脉冲控制方式,主要因为外部接线问题如接屏蔽,接地等等和驱动器内部的位置指令滤波参数设置问题而引起,这样的情况在绣花机,弹簧机上经常碰到,这种情况姑且也称为飞车。变频是伺服控制的一个必须的内部环节,伺服驱动器中同样存在变频(要进行无级调速)。第二是松下伺服电机的编码器零偏encoder offset而引起的飞车,究其实质是编码器零位错误导致的飞车。第三是伺服驱动器进行全闭环控制时,位置环编码器故障导致的飞车。编码器损坏造成的飞车,质上是因为伺服系统没有位置反馈信号,所以伺服系统的位置偏差是无穷大,从而位置环输出的速度指令将是无穷大,于是伺服系统将以速度---值进行高速旋转,形成飞车;第四种情况则是位置环编码器的接线错误,具体的就是信号a,a-的接线颠倒导致的。为什么出现这种情况呢,因为位置环编码器的接线一般是a,a-,b,b-,如果a,a-或b,b-信号接反的话,则形成正反馈,正反馈的后果就是必然导致飞车;第伍是位置偏差没有清除而导致的飞车,这种情况主要是发生在伺服驱动器位置脉冲指令控制下,并且伺服驱动器进行了力矩---,力矩---住后不能有效推动负载,导致位置偏差不断的累积,当解除力矩---后,伺服系统急于去消除该偏差,以大加速度去运行,从而导致飞车,当然这种飞车不会---,很快就会报警驱动器故障。
3、为什么松下伺服驱动器加上使能后,所连接的松下伺服电机的轴用手不能转动?
答:以伺服驱动器处于位置控制方式为例。当径向电磁力波与定子的固有频率接近时,就会惹起共振,使振动与噪声---加强,甚至危及直流伺服电机的使用寿命。运用自动控制的基本原理就可以进行解释。因为伺服驱动器加上使能后,整个闭环系统就开始工作了,但这个时候松下伺服系统的给定却为零,假定伺服驱动器处于位置控制方式的话,那么位置脉冲指令给定则为零,如果用手去转动电机轴的话,相当于外部扰动而产生了一个小的位置反馈,因为这个时候的位置脉冲指令给定为零,所以就产生了一个负的位置偏差值,然后该偏差值与伺服系统的位置环增益的乘积就形成了速度指令给定信号,然后速度指令给定信号与内部的电流环输出了力矩,这个力矩就带动电机运转试图来消除这个位置偏差,所以当人试图去转动电机轴的时候就感觉转动不了。
4、松下伺服驱动器制动电阻选择的问题?
答:制动电阻的问题,这是个大问题。当然从工程的角度来讲,因为有些东西无法准确的计算,为安全起见,对于频繁启动停止,频繁正反转的场合,可以简单的用能量守恒原理来进行计算。深圳市日弘忠信电器有限公司成立于1997年,是一家销售工业自动化控制产品与电气传动产品的企业。而对于制动电阻的阻值选择的一般规律是制动电阻的阻值不能够太大,也不能够太小,而是有一个范围的。如果阻值太大的话,简单点说,假如是无穷大的话,相当于制动电阻断开,制动电阻不起制动的作用,伺服驱动器还是会报警过电压;如果阻值太小的话,则制动的时候通过该电阻的电流就将非常大,流过制动功率管的电流也会非常大,会将制动功率管烧毁,而制动功率管的额定电流一般是等同于驱动管的,所以制动电阻的小值是不应当低于710/伺服驱动器的额定电流的假定伺服驱动器是三相380v电压输入。另外制动电阻分为两种:铝合金制动电阻和波纹制动电阻。当然网上资料说两种制动电阻各有优劣,但是我想对于一般的工程应用应该是都可以的。另外对于变频器的制动电阻的选择原理上与伺服驱动器是相似的。
5、松下伺服驱动器电子齿轮比的设置的问题?
答:这里首先要区分伺服的控制方式,当然这里假定伺服是以接受脉冲的方式来控制的伺服如果以总线的方式来控制的话,伺服驱动器就不用设置电子齿轮比了,但是在上位系统中却会有另外一个东西需要设置,这个东西就是脉冲当量,本质上和伺服驱动器的电子齿轮比是一回事,然后还有伺服是位置控制方式还是速度控制方式或力矩控制方式的问题,如果伺服是速度控制方式或力矩控制方式的话,显然电子齿轮比的设置就失去了意义。系统中还配备了“电子齿轮”,也就是说可以通过参数设定对输入指令脉冲任意分/倍频而达到和机械系统的---配合。也就是说电子齿轮比的设置仅在位置控制方式的时候才有效。还有个问题就是伺服是作为直线轴还是作为旋转轴来使用。对于绣花机来说,x轴,y轴,m轴,sp轴都是直线轴,因为大豪上位认为是1000个脉冲为一转,所以对于这些轴的电子齿轮比的设置实际上是机械减速比与8的乘积,而对于d轴,h轴来说,则是旋转轴,大豪上位认为8000个脉冲对应360度,所以电子齿轮比设置为8000/360=200/9。对于弹簧机各轴来说,其实也存在直线轴和旋转轴的问题,比如凸轮轴,螺距轴,切刀轴就是旋转轴,而送线轴则是直线轴,不过实际上在伺服驱动器里电子齿轮比一般设置为1/1,而将电子齿轮比的功能的设置放在弹簧机上位上进行,当然在弹簧机上位里换了个叫法,叫着解析度,解析度分子的计算,旋转轴凸轮轴,螺距轴,切刀轴=360乘以100,直线轴送线轴=圆周率乘以直径乘以100;解析度分母的计算:伺服马达编码器的分辨率*信号倍率*齿轮比。
松下伺服驱动器具有响应速度快的特点
松下伺服驱动器是用来控制伺服电机的机器,具有调速范围宽、定位精度高、响应速度快、过载能力强等特点。那么松下伺服驱动器应该如何进行搬运和安装呢?今天深圳日弘忠信的小编就来告诉您松下伺服驱动器的搬运和安装时需要注意的问题:
1、搬运时一定要避免使其坠落或遭受强力冲击。
2、伺服放大器与控制柜的内侧以及其他机器这间需保持规定的间距。
3、在搬运及摆放松下伺服驱动器机器时不要超过规定的数量及不要在机器上放置重物。
4、在安装松下伺服电机时一定要牢固地固定在机械上,否则在松下伺服电机运转的时候会脱盲。
5、为保护正确使用轴,误在松下伺服电机的轴上施加超出范围的负载,更不要敲击松下伺服电机的轴,以免造成编码器损坏及轴的损坏。
6、带有减速机的松下伺服电机必须以定的方向安装,以免出现漏油。
以上讲述的这六点就是松下伺服驱动器搬运和安装时需要注意的一些事项,信息仅供大家参考!松下伺服机电受欢迎的原因,不知道的没有关系下面看看小编是怎么解说的,一起来看看:一、能恒力矩输出,不受转速的影响。如果有朋友想购买松下伺服驱动器的,可以来电咨询,也可以登录到我们的公司松下伺服电机上先了解后咨询,这也是可以的,我们公司网站上产品种类和各种产品型号图片都非常的齐全,应该会有合适你的,如果看上了---可以打电话进一步的了解,欢迎您的咨询!我们公司也会将竭诚为您服务的!
联系时请说明是在云商网上看到的此信息,谢谢!
推荐关键词:松下伺服电机,松下PLC,松下传感器
本页网址:https://www.ynshangji.com/xw/25983576.html
声明提示:
本页信息(文字、图片等资源)由用户自行发布,若侵犯您的权益请及时联系我们,我们将迅速对信息进行核实处理。
登录后台


