防爆除尘设备欢迎来电「多图」
防爆除尘设备开孔率是影响阻力系数的重要因素。管道的形状圆形或矩形不影响压力损失系数。针对防爆除尘设备多孔板的阻力特性,本文主要研究了58种中国风格的多孔板。相对厚度对阻力系数影响较大。当其它参数不变时,相对厚度的增加将导致系统阻力系数的减小。在大多数情况下,随着开口数量的增加,阻力系数将减小。孔间循环面积的大小将影响阻力系数,孔分布与阻力系数有关。以山西某电厂350mw燃煤防爆除尘设备为原型,按1∶145875的比例建立物理模型。经过多次试验,确定了多孔板与调流板导板夹角的醉佳组合方案,并确定了该除尘器内的气流分布。
下一步调整了电除尘器,取得了满意的效果。多孔板的阻力特性在不同环境中变化很大,阻力系数受多种因素的影响。对于过滤式除尘,箱内流场分布直接影响除尘器的工作效率和滤筒的使用寿命,因此有---对除尘器内部流场进行分析。本文研究了多孔板在不同环境下的电阻特性。防爆除尘设备主要分为两部分:常温单相流体介质环境下多孔板电阻特性的影响因素和高温环境下多孔板电阻特性的影响因素。本文建立了多孔板阻力特性的物理模型试验系统。防爆除尘设备通过改变系统内单相流动速度,改变雷诺数或开孔率、相对厚度和孔数,研究多孔板的阻力特性。通过模拟采暖系统的流体温度,模拟电厂除尘器内的流体环境。研究了多孔板在高温环境下电阻特性的影响因素。
本文的研究内容是在以往项目组成员研究的基础上进一步探索,大胆改进了防爆除尘设备的进气方式。本文将下吸式滤波器的原始模型改为上吸式滤波器,以尝试上吸式滤波器。烟气从氨脱硫塔出口经过一根20米长的烟道,从湿电除尘器顶部进入湿电除尘器内部。由于上升气流过滤器的进气方式发生变化,在进气管上增加了一组圆锥形散射体,在进气管下端增加了一个圆形导板。然后对上升气流过滤模型的流场进行了模拟。从气流对滤筒的冲刷作用、灰斗的涡流现象和气流分布等方面,与原模型进行了比较,---了防爆除尘设备的优点,为进一步优化流场分布均匀性铺平了道路。在研究同一防爆除尘设备不同部位的气体处理量分布规律时,不可能在后处理过程中直接得到滤筒不同部位的气体处理量,但发现滤筒的气体处理量与温度呈正相关。滤筒内外壁之间的压差。因此,本文将滤筒内外壁的压力差反映在同一滤筒不同部位的气体处理情况。
数量。在对方形箱结构的分析中发现,由于方形箱结构的存在,靠近箱壁的过滤筒的空气处理能力大于靠近箱壁的过滤筒的空气处理能力,而位于过滤筒中部的四个过滤筒更靠近进风口和气流。模拟结果表明,是否添加多孔板、添加层数和多孔板开度对除尘器内气流速度大小及分布有较大影响。s直接从两侧的进气管。冲刷到这四个滤筒的底部,这种长期的冲刷作用会导致滤筒过早损坏。因此,采用结构较为对称的圆盒结构作为滤筒的箱体。同时,对圆形箱结构的滤筒与方形箱结构的滤筒的流场进行了分析比较。分析结果表明,圆盒结构不仅解决了防爆除尘设备单个滤筒的空气处理能力大的问题,而且直接解决了空气流向滤筒的问题。同时,进一步提高了除尘器内部流场的均匀性。
防爆除尘设备褶皱---可为35索姆。根据气体处理能力的要求和除尘器的结构尺寸,选择滤筒长度为soomm,直径为zoomm,褶深为43mm,褶数为120,过滤面积为8.3m2。针对倾斜导板过滤筒除尘器模型不适合---流场的问题,提出了垂直双导板流场-方案。滤筒上的滤料为带覆膜材料的纺粘无纺布,覆膜材料为聚四氟乙烯膜。防爆除尘设备箱体是整个除尘器的外壳,包括中间箱体、上部箱体和灰斗。中间箱体主要提供---的除尘空间,有利于流场的合理分布。上箱体主要用于净化气体和安装喷淋清灰装置。灰斗用于储存清洁后从滤筒表面落下的灰尘。防爆除尘设备喷射除灰装置。
传统的防爆除尘设备除尘方式主要有高压气流反吹和脉冲气流喷射两种。高压空气反吹法的优点是每个过滤筒的反吹空气分布均匀,但由于连续反吹,对高压气体的需求量较大,所以成本较高。虽然脉冲注入法所需的高压气体---减少,但由于瞬时风速大于大使的,大量气体---在过滤管的下部,使过滤管的上部效率降低。在推导集尘器效率公式的过程中,deutsch假设防爆除尘设备内部工作过程中各界面处的气流分布是均匀的,但在实际情况中,集尘器各界面处的气流分布不是完全均匀的。因此,在设计除尘器除尘系统时,项目组对传统的脉冲喷射法进行了改进,即在喷射孔下加一个圆锥形散射体,当空气遇到时。当扩散器到达时,它会分散在周围,使气流更容易冲击滤筒上部,使滤筒具有---的清洗效果。
联系时请说明是在云商网上看到的此信息,谢谢!
本页网址:https://www.ynshangji.com/xw/27972929.html
声明提示:
本页信息(文字、图片等资源)由用户自行发布,若侵犯您的权益请及时联系我们,我们将迅速对信息进行核实处理。