根据轴的尺寸生成计算方案。可以开展部件之间角位移变形计算,轴系部件中的振动扭矩和应力计算,齿轮啮合产生的锤击效应分析,柔性元件和阻尼器的功率损耗计算,柴油机正常运行以及停机状态的计算分析。---的冰区加强和短路分析功能可提供时域的瞬态分析功能,支持各船级社提出的标准。
扭转振动的计算依靠由图形编辑器制作的-弹性模型来进行,而且也包括自由和受迫振动图5。其结果显示在呈现不 同旋转速度下振动情况的图形和共振表中。然而就扭转振动而言,手动输入数值将更有效率,而不是依靠基本模型,因为扭转振动需要具体的数据。互藕振动应用计算直接耦合的柴油发动机装置的轴向-扭转振动参数。所有这些计算都集成在单一的解决方案中。
这些计算结果都以xml文件定制成详细的报告,回旋振动计算海洋工程船舶,便于导出为各种不同的格式:
1.它---于海洋工业但我们也将其用于动力传动系计算并解决了许多与造船和修船相关的具体任务。
3. *轴对中模块考虑了两个平面中任意轴承的衬套位置。
4. *轴对中模块考虑到任意轴承衬套的形状。
5. *不仅提供船厂的计算,还提供实用说明和技术公差。
6. *可以结合横向振动计算使用轴对中计算参数。
7.支持我们的客户,修复错误和添加新功能快速而灵活
8.现代计算架构使我们有可能提高计算速度在优化中---。
9.没有第三方有限元解决方案,无需在有限元软件上购买昂贵的---
10. *可定制报告系统; 各种格式的报告可以导出,导出使报表与公司报告系统集成成为可能;报告几乎准备提交给班级
11. *市场上快的扭转瞬态振动模块,用于计算冰冲击和短路。
12. *提供轴对中的完整循环:使用反向计算确定当前轴承偏移;自动计算轴承偏移量以应用于船上;使用jack up测试/ sag&gap /应变计检查实施的轴对齐 - 使用设计一次的单软件和轴线模型。
13. *“状态”的概念使得考虑不同操作条件的过程变得容易和透明。
14.---的海运客户参考,包括船级社。
作为早期普遍采用的轴系校中安装方式,直线校中已不能满足当前的轴系设计要求。上世纪60年代初,mann发现采用直线校-式安装的轴系,大多工作状态不佳,
甚至可能会产生破坏。而后,逐渐衍生了按 轴承允许负荷校中、合理校中、双向优化校中和动态校中等轴系校-法。其中,根据轮机工 程系统国际合作组织于1975年召开的船舶推进
轴系会议可知,已有学者针对造船厂通用的轴系校-法开展了研究,分析对象为轴系静态校-法及轴系运行时的动态因素对轴系状态的影响。
近年来,---外已针对轴系动态校中问题开 展了研究工作,但由于船舶运转过程所涉及的动
态因素较多,故现有的轴系校中计算方法无法面 面俱到,因此,目前的研究成果只能作为静态校中 方法的补偿修正,而非严格---的轴系动态校 中。
船舶运行过程中主机与船体之间的温度传递相互作用,主机温度与船体变形、轴系各轴承位置变化规律;滑动轴承支撑
油膜的压力的影响;船体变形、轴承支座变形和螺旋桨水动力等对轴系校中计算的影响,上述均为船舶动态校中计算考虑到影响因素。
|