海洋工程船推进轴系校-法
1.1 低速轴校中计算
低速轴作为齿轮箱输出轴到尾轴部位,在对该段轴进行计
算期间,应提前做好建模工作,将其划分为41 个截面。由于
在冷态状态下,齿轮箱的前后轴承之间会产生较大的反力差,
对低速轴系做好动态校中计算具有---性。另外,在对齿轮箱
进行计算期间,还需要充分了解到对齿轮力所产生的影响,将
两个轴承之间的反力差控制在总重的20%。
1.2 高速轴校中计算
在对高速轴进行校中计算时,需使用膜片联轴器sx419-6
与各轴段进行连接,在与中间轴进行连接时,主要是使用
rato-s3310 与主机进行连接,将其作为弹性元件中的一种,
对高弹联轴器及膜片联轴器进行建模,并做好简化处理工作。
在处理期间,应---轴系处于---状态下,将膜片联轴器的弹
性部分忽略掉,将其作为一种刚性元件,需做好相关的处理工
作。在对安装的状态进行计算时,需要将2 个半联轴器分别放
置在各自相连的中间轴中,将金属膜片与过渡法兰之间的密度
控制在0。对高弹联轴器分解为3 个单元,推进轴系弯曲振动计算技术外包,分别与主机、中间
轴相连接,将中间弹性部分的密度控制为0。另外,在对高
速轴进行校对时,应充分的考虑到齿轮箱的输入轴,所产生的
热膨胀量。当环境温度为25℃时,会产生0.1512mm 的热膨胀量。
在冷态状态时,轴承会保持均匀的受力状态。在热态状态期间,
轴承所产生的负荷不均,齿轮箱的后轴承处会产生较大的支反
力,导致齿轮箱出现---的损坏,与校中计算中的要求不相符。
因此,为了提升高速轴校中的准确性,理论中心线需要以输入
轴前后轴承的延长线及连线为主,以完成对高速轴的有效校中,
---在热态状态时,各轴承的负荷均能够保持均匀的状态。
---范围:
软件适用于船舶推进轴寿命周期的各个环节。它能体现推进系的所有部件,因此用户在每个阶段应用模块·都能---同方面得益于软件所带来的各种好处。
该软件旨在使轴工程和对中设计并易于实施,在设计上针对市场需要,并在开发过程中与船级社和的推进系部件原设备制造商紧密合作。
在计算时,---可以利用单独且灵活的模型,进行各种与轴相关的运算。此外,它还能让用户分析不同的运行条件
—— 从压舱到满载、冷暖发动机,以及从单一轴到全组装推进系等不同状态,从而避免了此前用户不得不为多种运算以及可能的运行条件而管理许多不同数据模型和文件的做法。它还弥补了软件功能与人们对现有推进系技术的理解之间的差距。
软件在用户界面上投入甚多,再加上容易使用的3d建模功能,基于3种主要的建模技术,从而制作出逼真的推进系3d 演示
在理想的工作状态下,舰船推进轴系尾管滑动轴
承内孔的中心线和轴系轴颈的中心线应该重合,即两
者之间不存在夹角。我国的船舶行业标准[1]cb/z 338-
2005 中则建议尾管后轴承支承点处的轴颈截面转角
好不超过 3.5×10– 4 rad约 0.02°。如果超过此值则需
要对轴承进行斜镗孔处理,使轴承转角符合轴颈转
角;如果不超过此值,轴承沿直线基准布置,即忽略
轴承和轴线之间的夹角。
但是在实际轴系校中安装时,由于轴段和螺旋桨
的重力以及校中工艺的---等多方面的影响,轴承孔
和轴颈中心线之间往往存在一定的不对中夹角误差,
其中可分解为铅垂面内的倾角误差和水平面内的摆角
误差。
夹角误差的存在使得尾管轴承尤其是尾管后轴承
处产生了---的单边载荷,常常伴随着轴承的边缘磨
损,---影响轴承寿命。轴承自身的偏磨还---影
响轴承的承载性能,并对轴系的动态校中性能和舰船
振动造成影响。
|