干燥设备风机来电咨询,你想找的风机冠熙都有
通过对干燥设备风机设计参数和s2设计参数的多次迭代,得到了一个接近设计要求的初步三维设计方案。从表2可以看出,初步设计方案的气动参数与一维设计结果吻合较好。风机设计过程中一维参数的设计精度-支持设计工作的进一步发展。表2显示了一维设计结果和初步设计的平均参数。由表2可以看出,单级风机平均半径处的负荷系数约为1.0,甚于普通航空发动机压气机的负荷系数。风机转子叶片采用翼型结构,动叶14片,导叶15片,叶轮直径d为1500mm,干燥设备风机叶顶间隙delta为4。同时,单级风机的反应性略大于0.5,平均负荷分布在静、动叶片上,使干燥设备风机叶片展开中部的弯曲角度达到40度以上,扩压系数达到0.5以上。从出版的文献中不难找到。考虑到轴流风机制造成本的---,扩压系数接近0.6,基本达到了无主动流量控制技术的亚音速轴流风机的设计---。然而,在干燥设备风机设计结果与设计目标的压力比与效率之间仍存在一定的差距,需要进一步的详细设计来弥补。由于本文设计的单级风机的负荷比设计中采用的经验公式高,因此有-对每排叶片的稠度和展弦比进行调整。初步设计方案如图所示。6和7,以及表3所示的气动性能,其中载荷系数由叶尖的切线速度定义。
本文以方案中干燥设备风机的定子叶片为例进行了详细设计,优化了s1流面叶型,干燥设备风机采用三维叶片技术---了定子叶栅内的流动。通过三维数值模拟,对s2流面设计中的损失和滞后角模型进行了标定,为叶片三维建模提供了依据。通过与初步三维设计结果的比较,两种设计方案的气动参数径向分布一致,证实了干燥设备风机设计过程中s2流面设计的准确性和-性。由于叶尖泄漏流的存在,叶尖压力比与气流角图中灰色虚拟线圈所示的面积之间存在一定的偏差,但通过三-fd的修正,s2的设计趋势预测了叶尖泄漏流对气动参数径向分布的影响;bec在高负荷下,定子根部出现了气流分离现象,导致了出口气流角和s2设置的初步三维设计。锥形间隙改变了间隙内涡量场的分布,减少了叶尖泄漏损失,增强了干燥设备风机叶片上、中部的功能力。预测结果略有不同图中橙色虚线圈所示的区域。干燥设备风机利用一条非均匀有理b-sline曲线来描述由四个控制点红点控制的曲线,包括前缘点和后缘点。叶片体由四条非均匀曲面、两个吸力面和两个压力面组成,同时与较大切圆灰圆和前缘后缘椭圆弧相切。利用mit mises程序对s1型拖缆叶片进行了流场分析。采用b-lbaldwin-lomax湍流模型和agsabu-ghamman-shaw旁路过渡模型描述了过渡过程。
以干燥设备风机带后导叶的可调轴流风机模型为研究对象,如图1所示。风扇由集热器、活动叶片、后导叶和扩散器组成。风机转子叶片采用翼型结构,动叶14片,导叶15片,叶轮直径d为1500mm,干燥设备风机叶顶间隙delta为4.5mm,风机工作转速为1200r/min,轮毂比为0.6,设计工况安装角为32度,相应设计流量和总压为37.14m3_s-1和2348pa,结构简图给出了叶顶间隙均匀和不均匀的方程,其中前缘间隙和后缘间隙分别为1和2。leand te表示叶片的前缘和后缘。随着反应性的增加,动叶扩压系数增大,静叶扩压系数随反应性的减小而增大。为了-前缘与后缘的平均间隙为4.5mm,选取六种非均匀间隙进行分析。现代轴流风机的相对径向间隙为0.8%~1.5%[18],改变后风机叶尖间隙的较小相对径向间隙为1%,满足正常运行的要求,如表1所示。其-案1~3为渐变收缩型,方案4~6为渐变膨胀型。控制方程包括三维稳态雷诺时均n-s方程和可实现的k-e湍流模型。可实现的k-e模型可以有效地解决旋转运动、边界层流动分离、强逆压梯度、二次流和回流等问题。干燥设备风机采用分离隐式方法计算,壁面采用防滑边界条件,压力-速度耦合采用简单算法。采用二阶逆风法离散了与空间有关的对流项、扩散项和湍流粘性系数,忽略了重力和壁面粗糙度的影响。
干燥设备风机叶尖涡度的增大可以有效地阻碍泄漏流的通过,使干燥设备风机泄漏流与主流混合造成的损失减小,叶片前缘泄漏量的增加小于中、后缘泄漏量的增加。总体上,漏风量减少,提高了风机的性能。这与参考文献中得到的前、后缘对干燥设备风机总压损失系数的影响是一致的。随着间隙的逐渐增大,叶顶前部的涡度强度增大,后缘的涡度强度减小,总体变化较小,泄漏量略有增加。叶片吸力前缘中部涡度强度略有增加,沿弦长方向吸力面中部和后部涡度强度基本不变。干燥设备风机与方案3相比,方案2具有几乎相同的区范围,但叶尖间隙较大,有利于防止动静部件之间的摩擦,而方案6具有明显的性能退化,易于分析其损耗机理。干燥设备风机叶片前缘附近的涡度强度急剧增加。这是由于前缘点高度的变化导致的叶尖流动角度的变化。前缘点涡度强度的增加阻碍了吸力面附近的流入,也降低了主流与泄漏流的混合程度。虽然方案6的进风速度有所降低,但由于叶顶和后缘附近的涡度强度降低,干燥设备风机效率总体降低,相应的泄漏面积和泄漏流量增大。轴向速度分布可以反映转子叶片流道内的流动能力和分离尾迹区的特征。因此,转子叶片出口轴向速度分布的径向分布如图6所示,用于分析流量。由于叶根和叶顶端壁附件的附面层较厚,导致流体流过该区域后的轴向速度较小,而叶顶附件又因泄漏存在使轴向速度进一步减小。
联系时请说明是在云商网上看到的此信息,谢谢!
本页网址:https://www.ynshangji.com/xw/17998942.html
声明提示:
本页信息(文字、图片等资源)由用户自行发布,若侵犯您的权益请及时联系我们,我们将迅速对信息进行核实处理。
登录后台


