小型蔬菜烘干机-「舜天机电」
小型蔬菜烘干机分级器内孔直径d 取值150~160mm时,样品a、样品b实验的出籽率均大于50%,故烘干机使用此区间的内孔直径进行实验时,有未干燥或未干燥-的玫瑰花籽排出;小型蔬菜烘干机自循环系统是烘干段与冷却段相配套作业的工艺过程,当烘干机网带以醉低线速度走完全部行程,物料水分还高于设定指标时,自循环系统将自动启动,进入自循环烘干工艺流程。分级器内孔直径d 取80~110mm 时,样品a、样品b实验的出籽率均低于20%,此时烘干机干燥后的玫瑰花籽无-常排出;小型蔬菜烘干机分级器内孔直径d 取110~140mm时,样品b实验的出籽率逐步增大接近至100%,样品a实验的出籽率几乎为0。
综上所述分级器内孔直径d 取110~140mm 时,能够同时满足烘干机内玫瑰花籽安全贮藏含水率w0≤8%正常排出,油菜籽含水率w1=20.78%不出籽的设计要求。干燥温度对单位时刻失水率的影响玫瑰花籽品质受温度影响较大,应根据不同小型蔬菜烘干机类型严格控制干燥过程中的醉高料温。关于小型蔬菜烘干机热风干燥,气流是不可绕开的因素,经过剖析空气介质流场的散布从而得到温度场散布是一种研讨方法。干燥机一般的干燥温度为75~85℃,不得-90℃,故选取干燥器进风口温度t=60~90℃进行实验。实验时,称取玫瑰花籽样品a,每组5kg,取气流速度v=20m/s、分级器内孔直径d=140mm,测定进风口温度在60,70,80,90 ℃对单位时刻失水率的影响。
小型蔬菜烘干机
结果表明:跟着温度的升高,单位时刻失水率逐步增大。温度从60℃增大到80℃时,单位时刻失水率增大显着,温度从80℃增大到90℃时,单位时刻失水率较高,且单位时间失水率-维持在1%/min左右,可以猜测,温度持续增大,其单位时刻失水率变化很少,能量消耗将会大幅增加。堆积的枣厚度不要-1m,要求坚持通风,红枣存放10~15d后就可装箱进入市场。故玫瑰花籽干燥温度宜取70~90℃。
小型蔬菜烘干机气流速度对单位时刻失水率的影响
实验时,称取玫瑰花籽样品a,每组5kg,取干燥温度t=80℃、分级器内孔直径d=140mm,测定进风口风速在17,19,22,25m/s时对单位时刻失水率的影响。
小型蔬菜烘干机温控系统组成原理
本文所述的烘干机是用来烘干紫菜等产品,完成存储意图的装置。采用箱式结构,以热辐射加热为主,采用对流热风循环。当鲜枣装入烘干房后,要把门、通气口关严,以减少能量损失,进步能量利用率。烘干机采用1 个烘干箱,6 个温区,每个温区的丈量和控制原理完全相同。烘干过程中,烘干箱内温度的资料和控制规模为0-110℃,显现精度为0.1℃,控制精度小于1℃。根据上述要求进行设计温控系统,以满意烘干机所有的温度、精度。
本文设计的温控系统硬件部分分为:单片机主控模块、输入输出通道模块、报警模块等。硬件的整体结构示意图。小型蔬菜烘干机温控系统由单片机为中心,与外部芯片扩展构成主控模块。坚持室内的温度,大量排湿,枣的水分首要就是这个阶段被排出,直到红枣达到了烘制要求,完毕烘制。烘干箱的温度由温度传感器检测后,通过单片机内置的12 位a/d 转化器转化成数字信号。数字信号经采样、滤波、标度转化后,一方面将烘干箱内温度由显现器显现,另一方面将该温度值与设定值进行比较,取偏差值依照积分别离的pid 控制算法计算得输出控制量。控制输出量通过固态继电器控制加热管的加热时间,从而调节温度改变,使其趋向设定值,完成烘干机的温度控制。
温控系统设计硬件
小型蔬菜烘干机电源电路
电源模块是温控系统重要的组成部分,为系统中各模块供给稳定牢靠的作业电压,-系统正常作业。本系统采用外部12v 直流电源供电,经处理转化成3.3v 为单片机供电。小型蔬菜烘干机干燥动力学探求的-内容是薄层干燥曲线的数学模拟,进而得到薄层干燥方程。小型蔬菜烘干机设计分两步,一:选用输出电压精度高,输出电流大的模块电源,将电压从12v 转化成5v;二:选用三端集成稳压器将电压从5v 转化成3.3v。
小型蔬菜烘干机在干燥开端时,绝大多数物料的含水率下降的很快,水分瞬间蒸发,然后在很长的时间内只能去除较少的水分。在干燥开端,物料中的水分随干燥时间呈直线下降,当湿含量降到某一值时,干燥速率不再呈直线下降,在后一阶段则沿陡峭的曲线而改变,醉后物料中的水分趋于平衡水分。然而在干燥的第二阶段,即干燥处在由内部水分转移阶段时,则真空干燥对干燥速率并没有形成很大的影响。我们将阶段的干燥界说为恒速干燥,第二阶段的干燥界说为降速干燥。
影响与小型蔬菜烘干机控制稳定的干燥进程的外部因素有:温湿度、空气活动速度、方向以及物料的外部形态。外表水份蒸发是因为热量从-环境搬运至物料外表,物料外表的水份经过蒸汽的途径由物料外表气膜向外界分散,此进程包含两个进程:热量的传送和水分向外搬迁,故加速干燥的途径便是加强传热。所以,湿分和热量的搬迁就成了干燥原理的中心问题。温度从60℃增大到80℃时,单位时刻失水率增大显着,温度从80℃增大到90℃时,单位时刻失水率较高,且单位时间失水率-维持在1%/min左右,可以猜测,温度持续增大,其单位时刻失水率变化很少,能量消耗将会大幅增加。降速干燥进程是因为受到内因条件控 ,当热量输送到湿物料后而物料外表缺乏廊的自在水份时,因为持续的温度升高,当物料内产生温度梯度时,小型蔬菜烘干机热能会逐步由-向内部搬运,而湿份则相反,它是从物料内部搬运到外外表。内部水分搬运成为掌控呕}素的前提是,临界水份含量出现在材料干燥到极低的值。(在这里有一个切割点被界说界点,也就是恒速与降速干燥阶段的切割点,此刻物料的均衡湿含量界说为“临界湿含量”,临界湿含量在干燥动力学研讨中占据中心的-。)
联系时请说明是在云商网上看到的此信息,谢谢!
本页网址:https://www.ynshangji.com/xw/23386686.html
声明提示:
本页信息(文字、图片等资源)由用户自行发布,若侵犯您的权益请及时联系我们,我们将迅速对信息进行核实处理。
登录后台


