银芝麻重防腐涂料——山东金芝麻
第三代半导体材料,主要代表碳化硅和氮化相对于前两代半导体材料而言,在高温、高压、高频的工作环境下有着明显的优势。
碳化硅早在1842年就被发现了,直到1955年才开发出生长碳化硅晶体材料的方法,1987年商业化生产的的碳化硅才进入市场,21世纪后碳化硅的商业应用才算铺开。
与硅相比,碳化硅具有更高的禁带宽度,禁带宽度越宽,临界击穿电压越大,高电压下可以减少所需器件数目。具有高饱和电子飘逸速度,制作的元件开关速度大约是硅的3-10倍,高压条件下能高频操作,所需的驱动功率小,电路能量损耗低。具有高热导率,可减少所需的冷却系统,也更适用于高功率场景下的使用,一般的硅半导体器件只能在100℃以下正常运行,器件虽然能在200℃以上工作,但是效率---下降,而碳化硅的工作温度可达600℃,具有很强的耐热性。并且混合sic器件体积更小,工作损耗的降低以及工作温度的上升使得集成度提高,体积减小。
一碳化硅的合成和用途
碳化硅的合成是在一种特殊的电阻炉中进行的,这个炉子实际上就只是一根石墨电阻-体,它是用石墨颗粒或碳粒堆积成柱状而成的。这根-体放在中间,上述原料按硅石52%~54%,焦炭35%,木屑11%,工业盐1.5%~4%的比例均匀混合,紧密地充填在石墨-体的四周。当通电加热后,混合物就进行化学反应,生成碳化硅。其反应式为:
sio2+3c***sic+2co↑
反应的开始温度约在1400℃,产物为低温型的β-sic,基结晶非常细小,它可以稳定到2100℃,此后慢慢向高温型的α-sic转化。α-sic可以稳定到2400℃而不发生---的分解,至2600℃以上时升华分解,挥发出硅蒸气,残留下石墨。所以一般选择反应的终温度为1900~2200℃。反应合成的产物为块状结晶聚合体,需粉碎成不同粒度的颗粒或粉料,同时除去其中的杂质。
一般来说,碳化硅耐火材料具有多方面的优良性能,例如,在比较宽的温度范围内具有高的强度、高的抗热震性、优良的耐磨性能、高的热导率、耐化学腐蚀性等。不过,也应看到,它的弱点是能力差,由此而造成高温积胀大、变形等降低了使用寿命。
为了提高碳化硅耐火材料的性能,在结合剂方面做了不少的选择工作。使用粘土(包括氧化物)结合,但并未能起到保护作用,碳化硅颗粒仍然受到氧化和侵蚀。50年代末,选择用氮化硅(si3n4)结合,作为碳化硅耐火材料的改进产品,确实具有---的性(见图1),且无---的膨胀现象。但是价格较贵;加之在反复加热冷却时有突然破坏的可能;而氮化硅本身的网络结构带有渗透性,不能从---上保护碳化硅不被氧化。60年代初,又出现了用氧氮化硅(si2on2)结合的碳化硅耐火材料,比之氮化硅结合具有---的性能,因为氧氮化硅粘附于碳化硅表面的氧化硅薄膜,并与其反应形成和碳化硅牢固结合的连续保护膜。同时,这种材料的价格适当,相当于用氧化物结合的碳化硅材料。
硅化可在普通---压的碳管炉内进行,硅化温度必须大于2000℃。如果在66.65mpa的真空炉中进行,则硅化温度可降到1500~1600℃。产生硅蒸气所用的硅粉颗粒尺寸为0.991~4.699mm。在---压力下硅化时,硅粉可装在石墨坩埚里。在真空下硅化时,则应装在氮化硼(bn)坩埚里,因为此时硅会渗入石墨中并作用形成碳化硅而使石墨坩埚,而氮化硼与硅不润湿。硅化所需的时间依据硅化的温度及在该温度下的硅的挥发量的不同而变化。在硅化完成后,坩埚内通常不应该再有硅残留而都蒸发了。由于蒸发而附着在制品表面上的硅可用热的处理除去。自结合碳化硅制品的强度为一般碳化硅制品的7~10倍,且能力提高了。
联系时请说明是在云商网上看到的此信息,谢谢!
本页网址:https://www.ynshangji.com/xw/26284120.html